Enter a problem...
Calculus Examples
x+2x-6x+2x−6
Step 1
Interchange the variables.
x=y+2y-6x=y+2y−6
Step 2
Step 2.1
Multiply the equation by y-6y−6.
(y-6)(x)=(y+2y-6)(y-6)(y−6)(x)=(y+2y−6)(y−6)
Step 2.2
Simplify the left side.
Step 2.2.1
Apply the distributive property.
yx-6x=(y+2y-6)(y-6)yx−6x=(y+2y−6)(y−6)
yx-6x=(y+2y-6)(y-6)yx−6x=(y+2y−6)(y−6)
Step 2.3
Simplify the right side.
Step 2.3.1
Cancel the common factor of y-6y−6.
Step 2.3.1.1
Cancel the common factor.
yx-6x=y+2y-6(y-6)
Step 2.3.1.2
Rewrite the expression.
yx-6x=y+2
yx-6x=y+2
yx-6x=y+2
Step 2.4
Solve for y.
Step 2.4.1
Subtract y from both sides of the equation.
yx-6x-y=2
Step 2.4.2
Add 6x to both sides of the equation.
yx-y=2+6x
Step 2.4.3
Factor y out of yx-y.
Step 2.4.3.1
Factor y out of yx.
y(x)-y=2+6x
Step 2.4.3.2
Factor y out of -y.
y(x)+y⋅-1=2+6x
Step 2.4.3.3
Factor y out of y(x)+y⋅-1.
y(x-1)=2+6x
y(x-1)=2+6x
Step 2.4.4
Divide each term in y(x-1)=2+6x by x-1 and simplify.
Step 2.4.4.1
Divide each term in y(x-1)=2+6x by x-1.
y(x-1)x-1=2x-1+6xx-1
Step 2.4.4.2
Simplify the left side.
Step 2.4.4.2.1
Cancel the common factor of x-1.
Step 2.4.4.2.1.1
Cancel the common factor.
y(x-1)x-1=2x-1+6xx-1
Step 2.4.4.2.1.2
Divide y by 1.
y=2x-1+6xx-1
y=2x-1+6xx-1
y=2x-1+6xx-1
Step 2.4.4.3
Simplify the right side.
Step 2.4.4.3.1
Combine the numerators over the common denominator.
y=2+6xx-1
Step 2.4.4.3.2
Factor 2 out of 2+6x.
Step 2.4.4.3.2.1
Factor 2 out of 2.
y=2(1)+6xx-1
Step 2.4.4.3.2.2
Factor 2 out of 6x.
y=2(1)+2(3x)x-1
Step 2.4.4.3.2.3
Factor 2 out of 2(1)+2(3x).
y=2(1+3x)x-1
y=2(1+3x)x-1
y=2(1+3x)x-1
y=2(1+3x)x-1
y=2(1+3x)x-1
y=2(1+3x)x-1
Step 3
Replace y with f-1(x) to show the final answer.
f-1(x)=2(1+3x)x-1
Step 4
Step 4.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 4.2
Evaluate f-1(f(x)).
Step 4.2.1
Set up the composite result function.
f-1(f(x))
Step 4.2.2
Evaluate f-1(x+2x-6) by substituting in the value of f into f-1.
f-1(x+2x-6)=2(1+3(x+2x-6))(x+2x-6)-1
Step 4.2.3
Simplify the numerator.
Step 4.2.3.1
Combine 3 and x+2x-6.
f-1(x+2x-6)=2(1+3(x+2)x-6)x+2x-6-1
Step 4.2.3.2
Write 1 as a fraction with a common denominator.
f-1(x+2x-6)=2(x-6x-6+3(x+2)x-6)x+2x-6-1
Step 4.2.3.3
Combine the numerators over the common denominator.
f-1(x+2x-6)=2(x-6+3(x+2)x-6)x+2x-6-1
Step 4.2.3.4
Reorder terms.
f-1(x+2x-6)=2(x+3(x+2)-6x-6)x+2x-6-1
Step 4.2.3.5
Rewrite x+3(x+2)-6x-6 in a factored form.
Step 4.2.3.5.1
Apply the distributive property.
f-1(x+2x-6)=2(x+3x+3⋅2-6x-6)x+2x-6-1
Step 4.2.3.5.2
Multiply 3 by 2.
f-1(x+2x-6)=2(x+3x+6-6x-6)x+2x-6-1
Step 4.2.3.5.3
Add x and 3x.
f-1(x+2x-6)=2(4x+6-6x-6)x+2x-6-1
Step 4.2.3.5.4
Subtract 6 from 6.
f-1(x+2x-6)=2(4x+0x-6)x+2x-6-1
Step 4.2.3.5.5
Add 4x and 0.
f-1(x+2x-6)=2(4xx-6)x+2x-6-1
f-1(x+2x-6)=2(4xx-6)x+2x-6-1
f-1(x+2x-6)=2(4xx-6)x+2x-6-1
Step 4.2.4
Simplify the denominator.
Step 4.2.4.1
To write -1 as a fraction with a common denominator, multiply by x-6x-6.
f-1(x+2x-6)=2(4xx-6)x+2x-6-1⋅x-6x-6
Step 4.2.4.2
Combine -1 and x-6x-6.
f-1(x+2x-6)=2(4xx-6)x+2x-6+-(x-6)x-6
Step 4.2.4.3
Combine the numerators over the common denominator.
f-1(x+2x-6)=2(4xx-6)x+2-(x-6)x-6
Step 4.2.4.4
Rewrite x+2-(x-6)x-6 in a factored form.
Step 4.2.4.4.1
Apply the distributive property.
f-1(x+2x-6)=2(4xx-6)x+2-x+6x-6
Step 4.2.4.4.2
Multiply -1 by -6.
f-1(x+2x-6)=2(4xx-6)x+2-x+6x-6
Step 4.2.4.4.3
Subtract x from x.
f-1(x+2x-6)=2(4xx-6)0+2+6x-6
Step 4.2.4.4.4
Add 0 and 2.
f-1(x+2x-6)=2(4xx-6)2+6x-6
Step 4.2.4.4.5
Add 2 and 6.
f-1(x+2x-6)=2(4xx-6)8x-6
f-1(x+2x-6)=2(4xx-6)8x-6
f-1(x+2x-6)=2(4xx-6)8x-6
Step 4.2.5
Combine 2 and 4xx-6.
f-1(x+2x-6)=2(4x)x-68x-6
Step 4.2.6
Multiply 2 by 4.
f-1(x+2x-6)=8xx-68x-6
Step 4.2.7
Multiply the numerator by the reciprocal of the denominator.
f-1(x+2x-6)=8xx-6⋅x-68
Step 4.2.8
Cancel the common factor of 8.
Step 4.2.8.1
Factor 8 out of 8x.
f-1(x+2x-6)=8(x)x-6⋅x-68
Step 4.2.8.2
Cancel the common factor.
f-1(x+2x-6)=8xx-6⋅x-68
Step 4.2.8.3
Rewrite the expression.
f-1(x+2x-6)=xx-6⋅(x-6)
f-1(x+2x-6)=xx-6⋅(x-6)
Step 4.2.9
Cancel the common factor of x-6.
Step 4.2.9.1
Cancel the common factor.
f-1(x+2x-6)=xx-6⋅(x-6)
Step 4.2.9.2
Rewrite the expression.
f-1(x+2x-6)=x
f-1(x+2x-6)=x
f-1(x+2x-6)=x
Step 4.3
Evaluate f(f-1(x)).
Step 4.3.1
Set up the composite result function.
f(f-1(x))
Step 4.3.2
Evaluate f(2(1+3x)x-1) by substituting in the value of f-1 into f.
f(2(1+3x)x-1)=(2(1+3x)x-1)+2(2(1+3x)x-1)-6
Step 4.3.3
Cancel the common factor of (2(1+3x)x-1)+2 and (2(1+3x)x-1)-6.
Step 4.3.3.1
Factor 2 out of 2(1+3x)x-1.
f(2(1+3x)x-1)=2(1+3xx-1)+2(2(1+3x)x-1)-6
Step 4.3.3.2
Factor 2 out of 2.
f(2(1+3x)x-1)=2(1+3xx-1)+2⋅12(1+3x)x-1-6
Step 4.3.3.3
Factor 2 out of 21+3xx-1+2(1).
f(2(1+3x)x-1)=2(1+3xx-1+1)(2(1+3x)x-1)-6
Step 4.3.3.4
Cancel the common factors.
Step 4.3.3.4.1
Factor 2 out of 2(1+3x)x-1.
f(2(1+3x)x-1)=2(1+3xx-1+1)2(1+3xx-1)-6
Step 4.3.3.4.2
Factor 2 out of -6.
f(2(1+3x)x-1)=2(1+3xx-1+1)2(1+3xx-1)+2⋅-3
Step 4.3.3.4.3
Factor 2 out of 21+3xx-1+2⋅-3.
f(2(1+3x)x-1)=2(1+3xx-1+1)2(1+3xx-1-3)
Step 4.3.3.4.4
Cancel the common factor.
f(2(1+3x)x-1)=2(1+3xx-1+1)2(1+3xx-1-3)
Step 4.3.3.4.5
Rewrite the expression.
f(2(1+3x)x-1)=1+3xx-1+11+3xx-1-3
f(2(1+3x)x-1)=1+3xx-1+11+3xx-1-3
f(2(1+3x)x-1)=1+3xx-1+11+3xx-1-3
Step 4.3.4
Multiply the numerator and denominator of the fraction by x-1.
Step 4.3.4.1
Multiply 1+3xx-1+11+3xx-1-3 by x-1x-1.
f(2(1+3x)x-1)=x-1x-1⋅1+3xx-1+11+3xx-1-3
Step 4.3.4.2
Combine.
f(2(1+3x)x-1)=(x-1)(1+3xx-1+1)(x-1)(1+3xx-1-3)
f(2(1+3x)x-1)=(x-1)(1+3xx-1+1)(x-1)(1+3xx-1-3)
Step 4.3.5
Apply the distributive property.
f(2(1+3x)x-1)=(x-1)(1+3xx-1)+(x-1)⋅1(x-1)(1+3xx-1)+(x-1)⋅-3
Step 4.3.6
Simplify by cancelling.
Step 4.3.6.1
Cancel the common factor of x-1.
Step 4.3.6.1.1
Cancel the common factor.
f(2(1+3x)x-1)=(x-1)(1+3xx-1)+(x-1)⋅1(x-1)(1+3xx-1)+(x-1)⋅-3
Step 4.3.6.1.2
Rewrite the expression.
f(2(1+3x)x-1)=1+3x+(x-1)⋅1(x-1)(1+3xx-1)+(x-1)⋅-3
f(2(1+3x)x-1)=1+3x+(x-1)⋅1(x-1)(1+3xx-1)+(x-1)⋅-3
Step 4.3.6.2
Cancel the common factor of x-1.
Step 4.3.6.2.1
Cancel the common factor.
f(2(1+3x)x-1)=1+3x+(x-1)⋅1(x-1)(1+3xx-1)+(x-1)⋅-3
Step 4.3.6.2.2
Rewrite the expression.
f(2(1+3x)x-1)=1+3x+(x-1)⋅11+3x+(x-1)⋅-3
f(2(1+3x)x-1)=1+3x+(x-1)⋅11+3x+(x-1)⋅-3
f(2(1+3x)x-1)=1+3x+(x-1)⋅11+3x+(x-1)⋅-3
Step 4.3.7
Simplify the numerator.
Step 4.3.7.1
Multiply x-1 by 1.
f(2(1+3x)x-1)=1+3x+x-11+3x+(x-1)⋅-3
Step 4.3.7.2
Subtract 1 from 1.
f(2(1+3x)x-1)=3x+x+01+3x+(x-1)⋅-3
Step 4.3.7.3
Add 3x+x and 0.
f(2(1+3x)x-1)=3x+x1+3x+(x-1)⋅-3
Step 4.3.7.4
Add 3x and x.
f(2(1+3x)x-1)=4x1+3x+(x-1)⋅-3
f(2(1+3x)x-1)=4x1+3x+(x-1)⋅-3
Step 4.3.8
Simplify the denominator.
Step 4.3.8.1
Apply the distributive property.
f(2(1+3x)x-1)=4x1+3x+x⋅-3-1⋅-3
Step 4.3.8.2
Move -3 to the left of x.
f(2(1+3x)x-1)=4x1+3x-3⋅x-1⋅-3
Step 4.3.8.3
Multiply -1 by -3.
f(2(1+3x)x-1)=4x1+3x-3⋅x+3
Step 4.3.8.4
Add 1 and 3.
f(2(1+3x)x-1)=4x3x-3x+4
Step 4.3.8.5
Subtract 3x from 3x.
f(2(1+3x)x-1)=4x0+4
Step 4.3.8.6
Add 0 and 4.
f(2(1+3x)x-1)=4x4
f(2(1+3x)x-1)=4x4
Step 4.3.9
Cancel the common factor of 4.
Step 4.3.9.1
Cancel the common factor.
f(2(1+3x)x-1)=4x4
Step 4.3.9.2
Divide x by 1.
f(2(1+3x)x-1)=x
f(2(1+3x)x-1)=x
f(2(1+3x)x-1)=x
Step 4.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=2(1+3x)x-1 is the inverse of f(x)=x+2x-6.
f-1(x)=2(1+3x)x-1
f-1(x)=2(1+3x)x-1