Calculus Examples

Solve for x e^(0.06x)=3
e0.06x=3
Step 1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e0.06x)=ln(3)
Step 2
Expand the left side.
Tap for more steps...
Step 2.1
Expand ln(e0.06x) by moving 0.06x outside the logarithm.
0.06xln(e)=ln(3)
Step 2.2
The natural logarithm of e is 1.
0.06x1=ln(3)
Step 2.3
Multiply 0.06 by 1.
0.06x=ln(3)
0.06x=ln(3)
Step 3
Divide each term in 0.06x=ln(3) by 0.06 and simplify.
Tap for more steps...
Step 3.1
Divide each term in 0.06x=ln(3) by 0.06.
0.06x0.06=ln(3)0.06
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Cancel the common factor of 0.06.
Tap for more steps...
Step 3.2.1.1
Cancel the common factor.
0.06x0.06=ln(3)0.06
Step 3.2.1.2
Divide x by 1.
x=ln(3)0.06
x=ln(3)0.06
x=ln(3)0.06
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Replace e with an approximation.
x=log2.71828182(3)0.06
Step 3.3.2
Log base 2.71828182 of 3 is approximately 1.09861228.
x=1.098612280.06
Step 3.3.3
Divide 1.09861228 by 0.06.
x=18.31020481
x=18.31020481
x=18.31020481
e0.06x=3
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]