Enter a problem...
Calculus Examples
Step 1
Set the denominator in equal to to find where the expression is undefined.
Step 2
Step 2.1
To solve for , rewrite the equation using properties of logarithms.
Step 2.2
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 2.3
Solve for .
Step 2.3.1
Rewrite the equation as .
Step 2.3.2
To solve for , rewrite the equation using properties of logarithms.
Step 2.3.3
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 2.3.4
Solve for .
Step 2.3.4.1
Rewrite the equation as .
Step 2.3.4.2
Simplify .
Step 2.3.4.2.1
Anything raised to is .
Step 2.3.4.2.2
Simplify.
Step 3
Set the argument in less than or equal to to find where the expression is undefined.
Step 4
Set the argument in less than or equal to to find where the expression is undefined.
Step 5
Step 5.1
Convert the inequality to an equality.
Step 5.2
Solve the equation.
Step 5.2.1
To solve for , rewrite the equation using properties of logarithms.
Step 5.2.2
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 5.2.3
Solve for .
Step 5.2.3.1
Rewrite the equation as .
Step 5.2.3.2
Anything raised to is .
Step 5.3
Find the domain of .
Step 5.3.1
Set the argument in greater than to find where the expression is defined.
Step 5.3.2
The domain is all values of that make the expression defined.
Step 5.4
Use each root to create test intervals.
Step 5.5
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Step 5.5.1
Test a value on the interval to see if it makes the inequality true.
Step 5.5.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 5.5.1.2
Replace with in the original inequality.
Step 5.5.1.3
Determine if the inequality is true.
Step 5.5.1.3.1
The equation cannot be solved because it is undefined.
Step 5.5.1.3.2
The left side has no solution, which means that the given statement is false.
False
False
False
Step 5.5.2
Test a value on the interval to see if it makes the inequality true.
Step 5.5.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 5.5.2.2
Replace with in the original inequality.
Step 5.5.2.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 5.5.3
Test a value on the interval to see if it makes the inequality true.
Step 5.5.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 5.5.3.2
Replace with in the original inequality.
Step 5.5.3.3
The left side is greater than the right side , which means that the given statement is false.
False
False
Step 5.5.4
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
True
False
Step 5.6
The solution consists of all of the true intervals.
Step 6
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 7