Enter a problem...
Calculus Examples
tan(2x)
Step 1
Set the argument in tan(2x) equal to π2+πn to find where the expression is undefined.
2x=π2+πn, for any integer n
Step 2
Step 2.1
Divide each term in 2x=π2+πn by 2.
2x2=π22+πn2
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 2.
Step 2.2.1.1
Cancel the common factor.
2x2=π22+πn2
Step 2.2.1.2
Divide x by 1.
x=π22+πn2
x=π22+πn2
x=π22+πn2
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Multiply the numerator by the reciprocal of the denominator.
x=π2⋅12+πn2
Step 2.3.1.2
Multiply π2⋅12.
Step 2.3.1.2.1
Multiply π2 by 12.
x=π2⋅2+πn2
Step 2.3.1.2.2
Multiply 2 by 2.
x=π4+πn2
x=π4+πn2
x=π4+πn2
x=π4+πn2
x=π4+πn2
Step 3
The equation is undefined where the denominator equals 0, the argument of a square root is less than 0, or the argument of a logarithm is less than or equal to 0.
{x|x=π4+πn2}n, for any integer n
Step 4