Calculus Examples

Find the Tangent Line at x=-1 f(x)=1-2x^2 , x=-1
,
Step 1
Find the corresponding -value to .
Tap for more steps...
Step 1.1
Substitute in for .
Step 1.2
Simplify .
Tap for more steps...
Step 1.2.1
Simplify each term.
Tap for more steps...
Step 1.2.1.1
Raise to the power of .
Step 1.2.1.2
Multiply by .
Step 1.2.2
Subtract from .
Step 2
Find the first derivative and evaluate at and to find the slope of the tangent line.
Tap for more steps...
Step 2.1
Differentiate.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Subtract from .
Step 2.4
Evaluate the derivative at .
Step 2.5
Multiply by .
Step 3
Plug the slope and point values into the point-slope formula and solve for .
Tap for more steps...
Step 3.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 3.2
Simplify the equation and keep it in point-slope form.
Step 3.3
Solve for .
Tap for more steps...
Step 3.3.1
Simplify .
Tap for more steps...
Step 3.3.1.1
Rewrite.
Step 3.3.1.2
Simplify by adding zeros.
Step 3.3.1.3
Apply the distributive property.
Step 3.3.1.4
Multiply by .
Step 3.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.3.2.1
Subtract from both sides of the equation.
Step 3.3.2.2
Subtract from .
Step 4