Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Use to rewrite as .
Step 1.2
Differentiate using the chain rule, which states that is where and .
Step 1.2.1
To apply the Chain Rule, set as .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Replace all occurrences of with .
Step 1.3
To write as a fraction with a common denominator, multiply by .
Step 1.4
Combine and .
Step 1.5
Combine the numerators over the common denominator.
Step 1.6
Simplify the numerator.
Step 1.6.1
Multiply by .
Step 1.6.2
Subtract from .
Step 1.7
Combine fractions.
Step 1.7.1
Move the negative in front of the fraction.
Step 1.7.2
Combine and .
Step 1.7.3
Move to the denominator using the negative exponent rule .
Step 1.8
By the Sum Rule, the derivative of with respect to is .
Step 1.9
Differentiate using the Power Rule which states that is where .
Step 1.10
Since is constant with respect to , the derivative of with respect to is .
Step 1.11
Simplify terms.
Step 1.11.1
Add and .
Step 1.11.2
Combine and .
Step 1.11.3
Combine and .
Step 1.11.4
Cancel the common factor.
Step 1.11.5
Rewrite the expression.
Step 2
Replace the variable with in the expression.
Step 3
Step 3.1
Raise to the power of .
Step 3.2
Add and .
Step 3.3
Rewrite as .
Step 3.4
Apply the power rule and multiply exponents, .
Step 3.5
Cancel the common factor of .
Step 3.5.1
Cancel the common factor.
Step 3.5.2
Rewrite the expression.
Step 3.6
Evaluate the exponent.
Step 4
Step 4.1
Factor out of .
Step 4.2
Cancel the common factors.
Step 4.2.1
Factor out of .
Step 4.2.2
Cancel the common factor.
Step 4.2.3
Rewrite the expression.