Calculus Examples

Graph (2x)/( square root of x^2-9)
2xx2-92xx29
Step 1
Find the y value at x=-4.
Tap for more steps...
Step 1.1
Replace the variable x with -4 in the expression.
f(-4)=2(-4)((-4)+3)((-4)-3)((-4)+3)((-4)-3)
Step 1.2
Simplify the result.
Tap for more steps...
Step 1.2.1
Multiply 2 by -4.
f(-4)=-8(-4+3)(-4-3)(-4+3)(-4-3)
Step 1.2.2
Simplify the denominator.
Tap for more steps...
Step 1.2.2.1
Add -4 and 3.
f(-4)=-8(-4+3)(-4-3)-1(-4-3)
Step 1.2.2.2
Subtract 3 from -4.
f(-4)=-8(-4+3)(-4-3)-1-7
f(-4)=-8(-4+3)(-4-3)-1-7
Step 1.2.3
Simplify the numerator.
Tap for more steps...
Step 1.2.3.1
Add -4 and 3.
f(-4)=-8-1(-4-3)-1-7
Step 1.2.3.2
Subtract 3 from -4.
f(-4)=-8-1-7-1-7
Step 1.2.3.3
Multiply -1 by -7.
f(-4)=-87-1-7
f(-4)=-87-1-7
Step 1.2.4
Simplify the expression.
Tap for more steps...
Step 1.2.4.1
Multiply -1 by -7.
f(-4)=-877
Step 1.2.4.2
Move the negative in front of the fraction.
f(-4)=-877
f(-4)=-877
Step 1.2.5
The final answer is -877.
-877
-877
Step 1.3
The y value at x=-4 is -877.
y=-877
y=-877
Step 2
Find the y value at x=-5.
Tap for more steps...
Step 2.1
Replace the variable x with -5 in the expression.
f(-5)=2(-5)((-5)+3)((-5)-3)((-5)+3)((-5)-3)
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Multiply 2 by -5.
f(-5)=-10(-5+3)(-5-3)(-5+3)(-5-3)
Step 2.2.2
Simplify the denominator.
Tap for more steps...
Step 2.2.2.1
Add -5 and 3.
f(-5)=-10(-5+3)(-5-3)-2(-5-3)
Step 2.2.2.2
Subtract 3 from -5.
f(-5)=-10(-5+3)(-5-3)-2-8
f(-5)=-10(-5+3)(-5-3)-2-8
Step 2.2.3
Simplify the numerator.
Tap for more steps...
Step 2.2.3.1
Add -5 and 3.
f(-5)=-10-2(-5-3)-2-8
Step 2.2.3.2
Subtract 3 from -5.
f(-5)=-10-2-8-2-8
Step 2.2.3.3
Multiply -2 by -8.
f(-5)=-1016-2-8
Step 2.2.3.4
Rewrite 16 as 42.
f(-5)=-1042-2-8
Step 2.2.3.5
Pull terms out from under the radical, assuming positive real numbers.
f(-5)=-104-2-8
f(-5)=-104-2-8
Step 2.2.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 2.2.4.1
Multiply -2 by -8.
f(-5)=-10416
Step 2.2.4.2
Multiply -10 by 4.
f(-5)=-4016
Step 2.2.4.3
Cancel the common factor of -40 and 16.
Tap for more steps...
Step 2.2.4.3.1
Factor 8 out of -40.
f(-5)=8(-5)16
Step 2.2.4.3.2
Cancel the common factors.
Tap for more steps...
Step 2.2.4.3.2.1
Factor 8 out of 16.
f(-5)=8-582
Step 2.2.4.3.2.2
Cancel the common factor.
f(-5)=8-582
Step 2.2.4.3.2.3
Rewrite the expression.
f(-5)=-52
f(-5)=-52
f(-5)=-52
Step 2.2.4.4
Move the negative in front of the fraction.
f(-5)=-52
f(-5)=-52
Step 2.2.5
The final answer is -52.
-52
-52
Step 2.3
The y value at x=-5 is -52.
y=-52
y=-52
Step 3
Find the y value at x=-6.
Tap for more steps...
Step 3.1
Replace the variable x with -6 in the expression.
f(-6)=2(-6)((-6)+3)((-6)-3)((-6)+3)((-6)-3)
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.2.1.1
Cancel the common factor of -6 and (-6)+3.
Tap for more steps...
Step 3.2.1.1.1
Factor 3 out of 2(-6)((-6)+3)((-6)-3).
f(-6)=3(2((-2)((-6)+3)((-6)-3)))((-6)+3)((-6)-3)
Step 3.2.1.1.2
Cancel the common factors.
Tap for more steps...
Step 3.2.1.1.2.1
Factor 3 out of ((-6)+3)((-6)-3).
f(-6)=3(2((-2)((-6)+3)((-6)-3)))3((-2+1)((-6)-3))
Step 3.2.1.1.2.2
Cancel the common factor.
f(-6)=3(2((-2)((-6)+3)((-6)-3)))3((-2+1)((-6)-3))
Step 3.2.1.1.2.3
Rewrite the expression.
f(-6)=2((-2)((-6)+3)((-6)-3))(-2+1)((-6)-3)
f(-6)=2((-2)((-6)+3)((-6)-3))(-2+1)((-6)-3)
f(-6)=2((-2)((-6)+3)((-6)-3))(-2+1)((-6)-3)
Step 3.2.1.2
Multiply 2 by -2.
f(-6)=-4(-6+3)(-6-3)(-2+1)(-6-3)
f(-6)=-4(-6+3)(-6-3)(-2+1)(-6-3)
Step 3.2.2
Simplify the denominator.
Tap for more steps...
Step 3.2.2.1
Add -2 and 1.
f(-6)=-4(-6+3)(-6-3)-1(-6-3)
Step 3.2.2.2
Subtract 3 from -6.
f(-6)=-4(-6+3)(-6-3)-1-9
f(-6)=-4(-6+3)(-6-3)-1-9
Step 3.2.3
Simplify the numerator.
Tap for more steps...
Step 3.2.3.1
Add -6 and 3.
f(-6)=-4-3(-6-3)-1-9
Step 3.2.3.2
Subtract 3 from -6.
f(-6)=-4-3-9-1-9
Step 3.2.3.3
Multiply -3 by -9.
f(-6)=-427-1-9
Step 3.2.3.4
Rewrite 27 as 323.
Tap for more steps...
Step 3.2.3.4.1
Factor 9 out of 27.
f(-6)=-49(3)-1-9
Step 3.2.3.4.2
Rewrite 9 as 32.
f(-6)=-4323-1-9
f(-6)=-4323-1-9
Step 3.2.3.5
Pull terms out from under the radical.
f(-6)=-4(33)-1-9
Step 3.2.3.6
Multiply -4 by 3.
f(-6)=-123-1-9
f(-6)=-123-1-9
Step 3.2.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.2.4.1
Multiply -1 by -9.
f(-6)=-1239
Step 3.2.4.2
Cancel the common factor of -12 and 9.
Tap for more steps...
Step 3.2.4.2.1
Factor 3 out of -123.
f(-6)=3(-43)9
Step 3.2.4.2.2
Cancel the common factors.
Tap for more steps...
Step 3.2.4.2.2.1
Factor 3 out of 9.
f(-6)=3(-43)3(3)
Step 3.2.4.2.2.2
Cancel the common factor.
f(-6)=3(-43)33
Step 3.2.4.2.2.3
Rewrite the expression.
f(-6)=-433
f(-6)=-433
f(-6)=-433
Step 3.2.4.3
Move the negative in front of the fraction.
f(-6)=-433
f(-6)=-433
Step 3.2.5
The final answer is -433.
-433
-433
Step 3.3
The y value at x=-6 is -433.
y=-433
y=-433
Step 4
Find the y value at x=4.
Tap for more steps...
Step 4.1
Replace the variable x with 4 in the expression.
f(4)=2(4)((4)+3)((4)-3)((4)+3)((4)-3)
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Multiply 2 by 4.
f(4)=8(4+3)(4-3)(4+3)(4-3)
Step 4.2.2
Simplify the denominator.
Tap for more steps...
Step 4.2.2.1
Add 4 and 3.
f(4)=8(4+3)(4-3)7(4-3)
Step 4.2.2.2
Subtract 3 from 4.
f(4)=8(4+3)(4-3)71
f(4)=8(4+3)(4-3)71
Step 4.2.3
Simplify the numerator.
Tap for more steps...
Step 4.2.3.1
Add 4 and 3.
f(4)=87(4-3)71
Step 4.2.3.2
Subtract 3 from 4.
f(4)=87171
Step 4.2.3.3
Multiply 7 by 1.
f(4)=8771
f(4)=8771
Step 4.2.4
Multiply 7 by 1.
f(4)=877
Step 4.2.5
The final answer is 877.
877
877
Step 4.3
The y value at x=4 is 877.
y=877
y=877
Step 5
Find the y value at x=5.
Tap for more steps...
Step 5.1
Replace the variable x with 5 in the expression.
f(5)=2(5)((5)+3)((5)-3)((5)+3)((5)-3)
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Multiply 2 by 5.
f(5)=10(5+3)(5-3)(5+3)(5-3)
Step 5.2.2
Simplify the denominator.
Tap for more steps...
Step 5.2.2.1
Add 5 and 3.
f(5)=10(5+3)(5-3)8(5-3)
Step 5.2.2.2
Subtract 3 from 5.
f(5)=10(5+3)(5-3)82
f(5)=10(5+3)(5-3)82
Step 5.2.3
Simplify the numerator.
Tap for more steps...
Step 5.2.3.1
Add 5 and 3.
f(5)=108(5-3)82
Step 5.2.3.2
Subtract 3 from 5.
f(5)=108282
Step 5.2.3.3
Multiply 8 by 2.
f(5)=101682
Step 5.2.3.4
Rewrite 16 as 42.
f(5)=104282
Step 5.2.3.5
Pull terms out from under the radical, assuming positive real numbers.
f(5)=10482
f(5)=10482
Step 5.2.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 5.2.4.1
Multiply 8 by 2.
f(5)=10416
Step 5.2.4.2
Multiply 10 by 4.
f(5)=4016
Step 5.2.4.3
Cancel the common factor of 40 and 16.
Tap for more steps...
Step 5.2.4.3.1
Factor 8 out of 40.
f(5)=8(5)16
Step 5.2.4.3.2
Cancel the common factors.
Tap for more steps...
Step 5.2.4.3.2.1
Factor 8 out of 16.
f(5)=8582
Step 5.2.4.3.2.2
Cancel the common factor.
f(5)=8582
Step 5.2.4.3.2.3
Rewrite the expression.
f(5)=52
f(5)=52
f(5)=52
f(5)=52
Step 5.2.5
The final answer is 52.
52
52
Step 5.3
The y value at x=5 is 52.
y=52
y=52
Step 6
Find the y value at x=6.
Tap for more steps...
Step 6.1
Replace the variable x with 6 in the expression.
f(6)=2(6)((6)+3)((6)-3)((6)+3)((6)-3)
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 6.2.1.1
Cancel the common factor of 6 and (6)+3.
Tap for more steps...
Step 6.2.1.1.1
Factor 3 out of 2(6)((6)+3)((6)-3).
f(6)=3(2((2)((6)+3)((6)-3)))((6)+3)((6)-3)
Step 6.2.1.1.2
Cancel the common factors.
Tap for more steps...
Step 6.2.1.1.2.1
Factor 3 out of ((6)+3)((6)-3).
f(6)=3(2((2)((6)+3)((6)-3)))3((2+1)((6)-3))
Step 6.2.1.1.2.2
Cancel the common factor.
f(6)=3(2((2)((6)+3)((6)-3)))3((2+1)((6)-3))
Step 6.2.1.1.2.3
Rewrite the expression.
f(6)=2((2)((6)+3)((6)-3))(2+1)((6)-3)
f(6)=2((2)((6)+3)((6)-3))(2+1)((6)-3)
f(6)=2((2)((6)+3)((6)-3))(2+1)((6)-3)
Step 6.2.1.2
Multiply 2 by 2.
f(6)=4(6+3)(6-3)(2+1)(6-3)
f(6)=4(6+3)(6-3)(2+1)(6-3)
Step 6.2.2
Simplify the denominator.
Tap for more steps...
Step 6.2.2.1
Add 2 and 1.
f(6)=4(6+3)(6-3)3(6-3)
Step 6.2.2.2
Subtract 3 from 6.
f(6)=4(6+3)(6-3)33
f(6)=4(6+3)(6-3)33
Step 6.2.3
Simplify the numerator.
Tap for more steps...
Step 6.2.3.1
Add 6 and 3.
f(6)=49(6-3)33
Step 6.2.3.2
Subtract 3 from 6.
f(6)=49333
Step 6.2.3.3
Multiply 9 by 3.
f(6)=42733
Step 6.2.3.4
Rewrite 27 as 323.
Tap for more steps...
Step 6.2.3.4.1
Factor 9 out of 27.
f(6)=49(3)33
Step 6.2.3.4.2
Rewrite 9 as 32.
f(6)=432333
f(6)=432333
Step 6.2.3.5
Pull terms out from under the radical.
f(6)=4(33)33
Step 6.2.3.6
Multiply 4 by 3.
f(6)=12333
f(6)=12333
Step 6.2.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 6.2.4.1
Multiply 3 by 3.
f(6)=1239
Step 6.2.4.2
Cancel the common factor of 12 and 9.
Tap for more steps...
Step 6.2.4.2.1
Factor 3 out of 123.
f(6)=3(43)9
Step 6.2.4.2.2
Cancel the common factors.
Tap for more steps...
Step 6.2.4.2.2.1
Factor 3 out of 9.
f(6)=3(43)3(3)
Step 6.2.4.2.2.2
Cancel the common factor.
f(6)=3(43)33
Step 6.2.4.2.2.3
Rewrite the expression.
f(6)=433
f(6)=433
f(6)=433
f(6)=433
Step 6.2.5
The final answer is 433.
433
433
Step 6.3
The y value at x=6 is 433.
y=433
y=433
Step 7
List the points to graph.
(-4,-3.02371578),(-5,-2.5),(-6,-2.30940107),(4,3.02371578),(5,2.5),(6,2.30940107)
Step 8
Select a few points to graph.
xy-6-2.309-5-2.5-4-3.02443.02452.562.309
Step 9
 [x2  12  π  xdx ]