Calculus Examples

Find the Inflection Points -3x^4+28x^3-60x^2
Step 1
Write as a function.
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
Find the first derivative.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Evaluate .
Tap for more steps...
Step 2.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.2
Differentiate using the Power Rule which states that is where .
Step 2.1.2.3
Multiply by .
Step 2.1.3
Evaluate .
Tap for more steps...
Step 2.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.3.2
Differentiate using the Power Rule which states that is where .
Step 2.1.3.3
Multiply by .
Step 2.1.4
Evaluate .
Tap for more steps...
Step 2.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.4.2
Differentiate using the Power Rule which states that is where .
Step 2.1.4.3
Multiply by .
Step 2.2
Find the second derivative.
Tap for more steps...
Step 2.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.2
Evaluate .
Tap for more steps...
Step 2.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.2.3
Multiply by .
Step 2.2.3
Evaluate .
Tap for more steps...
Step 2.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3.3
Multiply by .
Step 2.2.4
Evaluate .
Tap for more steps...
Step 2.2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.2.4.3
Multiply by .
Step 2.3
The second derivative of with respect to is .
Step 3
Set the second derivative equal to then solve the equation .
Tap for more steps...
Step 3.1
Set the second derivative equal to .
Step 3.2
Factor out of .
Tap for more steps...
Step 3.2.1
Factor out of .
Step 3.2.2
Factor out of .
Step 3.2.3
Factor out of .
Step 3.2.4
Factor out of .
Step 3.2.5
Factor out of .
Step 3.3
Divide each term in by and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in by .
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
Step 3.3.2.1.2
Divide by .
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Divide by .
Step 3.4
Use the quadratic formula to find the solutions.
Step 3.5
Substitute the values , , and into the quadratic formula and solve for .
Step 3.6
Simplify.
Tap for more steps...
Step 3.6.1
Simplify the numerator.
Tap for more steps...
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply .
Tap for more steps...
Step 3.6.1.2.1
Multiply by .
Step 3.6.1.2.2
Multiply by .
Step 3.6.1.3
Subtract from .
Step 3.6.1.4
Rewrite as .
Tap for more steps...
Step 3.6.1.4.1
Factor out of .
Step 3.6.1.4.2
Rewrite as .
Step 3.6.1.5
Pull terms out from under the radical.
Step 3.6.2
Multiply by .
Step 3.6.3
Simplify .
Step 3.7
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.7.1
Simplify the numerator.
Tap for more steps...
Step 3.7.1.1
Raise to the power of .
Step 3.7.1.2
Multiply .
Tap for more steps...
Step 3.7.1.2.1
Multiply by .
Step 3.7.1.2.2
Multiply by .
Step 3.7.1.3
Subtract from .
Step 3.7.1.4
Rewrite as .
Tap for more steps...
Step 3.7.1.4.1
Factor out of .
Step 3.7.1.4.2
Rewrite as .
Step 3.7.1.5
Pull terms out from under the radical.
Step 3.7.2
Multiply by .
Step 3.7.3
Simplify .
Step 3.7.4
Change the to .
Step 3.8
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.8.1
Simplify the numerator.
Tap for more steps...
Step 3.8.1.1
Raise to the power of .
Step 3.8.1.2
Multiply .
Tap for more steps...
Step 3.8.1.2.1
Multiply by .
Step 3.8.1.2.2
Multiply by .
Step 3.8.1.3
Subtract from .
Step 3.8.1.4
Rewrite as .
Tap for more steps...
Step 3.8.1.4.1
Factor out of .
Step 3.8.1.4.2
Rewrite as .
Step 3.8.1.5
Pull terms out from under the radical.
Step 3.8.2
Multiply by .
Step 3.8.3
Simplify .
Step 3.8.4
Change the to .
Step 3.9
The final answer is the combination of both solutions.
Step 4
Find the points where the second derivative is .
Tap for more steps...
Step 4.1
Substitute in to find the value of .
Tap for more steps...
Step 4.1.1
Replace the variable with in the expression.
Step 4.1.2
Simplify the result.
Tap for more steps...
Step 4.1.2.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.1
Raise to the power of .
Step 4.1.2.1.2
Multiply by .
Step 4.1.2.1.3
Raise to the power of .
Step 4.1.2.1.4
Multiply by .
Step 4.1.2.1.5
Raise to the power of .
Step 4.1.2.1.6
Multiply by .
Step 4.1.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 4.1.2.2.1
Add and .
Step 4.1.2.2.2
Subtract from .
Step 4.1.2.3
The final answer is .
Step 4.2
The point found by substituting in is . This point can be an inflection point.
Step 4.3
Substitute in to find the value of .
Tap for more steps...
Step 4.3.1
Replace the variable with in the expression.
Step 4.3.2
Simplify the result.
Tap for more steps...
Step 4.3.2.1
Simplify each term.
Tap for more steps...
Step 4.3.2.1.1
Raise to the power of .
Step 4.3.2.1.2
Multiply by .
Step 4.3.2.1.3
Raise to the power of .
Step 4.3.2.1.4
Multiply by .
Step 4.3.2.1.5
Raise to the power of .
Step 4.3.2.1.6
Multiply by .
Step 4.3.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 4.3.2.2.1
Add and .
Step 4.3.2.2.2
Subtract from .
Step 4.3.2.3
The final answer is .
Step 4.4
The point found by substituting in is . This point can be an inflection point.
Step 4.5
Determine the points that could be inflection points.
Step 5
Split into intervals around the points that could potentially be inflection points.
Step 6
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Raise to the power of .
Step 6.2.1.2
Multiply by .
Step 6.2.1.3
Multiply by .
Step 6.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 6.2.2.1
Add and .
Step 6.2.2.2
Subtract from .
Step 6.2.3
The final answer is .
Step 6.3
At , the second derivative is . Since this is negative, the second derivative is decreasing on the interval
Decreasing on since
Decreasing on since
Step 7
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Tap for more steps...
Step 7.2.1
Simplify each term.
Tap for more steps...
Step 7.2.1.1
Raise to the power of .
Step 7.2.1.2
Multiply by .
Step 7.2.1.3
Multiply by .
Step 7.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 7.2.2.1
Add and .
Step 7.2.2.2
Subtract from .
Step 7.2.3
The final answer is .
Step 7.3
At , the second derivative is . Since this is positive, the second derivative is increasing on the interval .
Increasing on since
Increasing on since
Step 8
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 8.1
Replace the variable with in the expression.
Step 8.2
Simplify the result.
Tap for more steps...
Step 8.2.1
Simplify each term.
Tap for more steps...
Step 8.2.1.1
Raise to the power of .
Step 8.2.1.2
Multiply by .
Step 8.2.1.3
Multiply by .
Step 8.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 8.2.2.1
Add and .
Step 8.2.2.2
Subtract from .
Step 8.2.3
The final answer is .
Step 8.3
At , the second derivative is . Since this is negative, the second derivative is decreasing on the interval
Decreasing on since
Decreasing on since
Step 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Step 10