Calculus Examples

Evaluate the Limit limit as x approaches pi/4 of tan(x)^(tan(x))
limxπ4tan(x)tan(x)
Step 1
Use the properties of logarithms to simplify the limit.
Tap for more steps...
Step 1.1
Rewrite tan(x)tan(x) as eln(tan(x)tan(x)).
limxπ4eln(tan(x)tan(x))
Step 1.2
Expand ln(tan(x)tan(x)) by moving tan(x) outside the logarithm.
limxπ4etan(x)ln(tan(x))
limxπ4etan(x)ln(tan(x))
Step 2
Evaluate the limit.
Tap for more steps...
Step 2.1
Move the limit into the exponent.
elimxπ4tan(x)ln(tan(x))
Step 2.2
Split the limit using the Product of Limits Rule on the limit as x approaches π4.
elimxπ4tan(x)limxπ4ln(tan(x))
Step 2.3
Move the limit inside the trig function because tangent is continuous.
etan(limxπ4x)limxπ4ln(tan(x))
Step 2.4
Move the limit inside the logarithm.
etan(limxπ4x)ln(limxπ4tan(x))
Step 2.5
Move the limit inside the trig function because tangent is continuous.
etan(limxπ4x)ln(tan(limxπ4x))
etan(limxπ4x)ln(tan(limxπ4x))
Step 3
Evaluate the limits by plugging in π4 for all occurrences of x.
Tap for more steps...
Step 3.1
Evaluate the limit of x by plugging in π4 for x.
etan(π4)ln(tan(limxπ4x))
Step 3.2
Evaluate the limit of x by plugging in π4 for x.
etan(π4)ln(tan(π4))
etan(π4)ln(tan(π4))
Step 4
Simplify the answer.
Tap for more steps...
Step 4.1
The exact value of tan(π4) is 1.
e1ln(tan(π4))
Step 4.2
Simplify 1ln(tan(π4)) by moving 1 inside the logarithm.
eln(tan1(π4))
Step 4.3
Exponentiation and log are inverse functions.
tan1(π4)
Step 4.4
The exact value of tan(π4) is 1.
11
Step 4.5
Evaluate the exponent.
1
1
limxπ4(tantan(x)(x))
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]