Enter a problem...
Calculus Examples
limx→π2tan(x)cos(x)limx→π2tan(x)cos(x)
Step 1
Step 1.1
Rewrite tan(x)cos(x)tan(x)cos(x) as eln(tan(x)cos(x))eln(tan(x)cos(x)).
limx→π2eln(tan(x)cos(x))limx→π2eln(tan(x)cos(x))
Step 1.2
Expand ln(tan(x)cos(x))ln(tan(x)cos(x)) by moving cos(x)cos(x) outside the logarithm.
limx→π2ecos(x)ln(tan(x))limx→π2ecos(x)ln(tan(x))
limx→π2ecos(x)ln(tan(x))limx→π2ecos(x)ln(tan(x))
Step 2
Set up the limit as a left-sided limit.
limx→(π2)-ecos(x)ln(tan(x))limx→(π2)−ecos(x)ln(tan(x))
Step 3
Step 3.1
Move the limit into the exponent.
elimx→(π2)-cos(x)ln(tan(x))elimx→(π2)−cos(x)ln(tan(x))
Step 3.2
Rewrite cos(x)ln(tan(x))cos(x)ln(tan(x)) as ln(tan(x))1cos(x)ln(tan(x))1cos(x).
elimx→(π2)-ln(tan(x))1cos(x)elimx→(π2)−ln(tan(x))1cos(x)
Step 3.3
Apply L'Hospital's rule.
Step 3.3.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 3.3.1.1
Take the limit of the numerator and the limit of the denominator.
elimx→(π2)-ln(tan(x))limx→(π2)-1cos(x)elimx→(π2)−ln(tan(x))limx→(π2)−1cos(x)
Step 3.3.1.2
As log approaches infinity, the value goes to ∞∞.
e∞limx→(π2)-1cos(x)e∞limx→(π2)−1cos(x)
Step 3.3.1.3
Evaluate the limit of the denominator.
Step 3.3.1.3.1
Convert from 1cos(x)1cos(x) to sec(x)sec(x).
e∞limx→(π2)-sec(x)e∞limx→(π2)−sec(x)
Step 3.3.1.3.2
As the xx values approach π2π2 from the left, the function values increase without bound.
e∞∞e∞∞
Step 3.3.1.3.3
Infinity divided by infinity is undefined.
Undefined
e∞∞e∞∞
Step 3.3.1.4
Infinity divided by infinity is undefined.
Undefined
e∞∞e∞∞
Step 3.3.2
Since ∞∞∞∞ is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
limx→(π2)-ln(tan(x))1cos(x)=limx→(π2)-ddx[ln(tan(x))]ddx[1cos(x)]limx→(π2)−ln(tan(x))1cos(x)=limx→(π2)−ddx[ln(tan(x))]ddx[1cos(x)]
Step 3.3.3
Find the derivative of the numerator and denominator.
Step 3.3.3.1
Differentiate the numerator and denominator.
elimx→(π2)-ddx[ln(tan(x))]ddx[1cos(x)]elimx→(π2)−ddx[ln(tan(x))]ddx[1cos(x)]
Step 3.3.3.2
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ln(x) and g(x)=tan(x).
Step 3.3.3.2.1
To apply the Chain Rule, set u as tan(x).
elimx→(π2)-ddu[ln(u)]ddx[tan(x)]ddx[1cos(x)]
Step 3.3.3.2.2
The derivative of ln(u) with respect to u is 1u.
elimx→(π2)-1uddx[tan(x)]ddx[1cos(x)]
Step 3.3.3.2.3
Replace all occurrences of u with tan(x).
elimx→(π2)-1tan(x)ddx[tan(x)]ddx[1cos(x)]
elimx→(π2)-1tan(x)ddx[tan(x)]ddx[1cos(x)]
Step 3.3.3.3
Rewrite tan(x) in terms of sines and cosines.
elimx→(π2)-1sin(x)cos(x)ddx[tan(x)]ddx[1cos(x)]
Step 3.3.3.4
Multiply by the reciprocal of the fraction to divide by sin(x)cos(x).
elimx→(π2)-1cos(x)sin(x)ddx[tan(x)]ddx[1cos(x)]
Step 3.3.3.5
Write 1 as a fraction with denominator 1.
elimx→(π2)-11⋅cos(x)sin(x)ddx[tan(x)]ddx[1cos(x)]
Step 3.3.3.6
Simplify.
Step 3.3.3.6.1
Rewrite the expression.
elimx→(π2)-1cos(x)sin(x)ddx[tan(x)]ddx[1cos(x)]
Step 3.3.3.6.2
Multiply cos(x)sin(x) by 1.
elimx→(π2)-cos(x)sin(x)ddx[tan(x)]ddx[1cos(x)]
elimx→(π2)-cos(x)sin(x)ddx[tan(x)]ddx[1cos(x)]
Step 3.3.3.7
The derivative of tan(x) with respect to x is sec2(x).
elimx→(π2)-cos(x)sin(x)sec2(x)ddx[1cos(x)]
Step 3.3.3.8
Combine cos(x)sin(x) and sec2(x).
elimx→(π2)-cos(x)sec2(x)sin(x)ddx[1cos(x)]
Step 3.3.3.9
Simplify.
Step 3.3.3.9.1
Simplify the numerator.
Step 3.3.3.9.1.1
Rewrite sec(x) in terms of sines and cosines.
elimx→(π2)-cos(x)(1cos(x))2sin(x)ddx[1cos(x)]
Step 3.3.3.9.1.2
Apply the product rule to 1cos(x).
elimx→(π2)-cos(x)12cos2(x)sin(x)ddx[1cos(x)]
Step 3.3.3.9.1.3
Cancel the common factor of cos(x).
Step 3.3.3.9.1.3.1
Factor cos(x) out of cos2(x).
elimx→(π2)-cos(x)12cos(x)cos(x)sin(x)ddx[1cos(x)]
Step 3.3.3.9.1.3.2
Cancel the common factor.
elimx→(π2)-cos(x)12cos(x)cos(x)sin(x)ddx[1cos(x)]
Step 3.3.3.9.1.3.3
Rewrite the expression.
elimx→(π2)-12cos(x)sin(x)ddx[1cos(x)]
elimx→(π2)-12cos(x)sin(x)ddx[1cos(x)]
Step 3.3.3.9.1.4
One to any power is one.
elimx→(π2)-1cos(x)sin(x)ddx[1cos(x)]
elimx→(π2)-1cos(x)sin(x)ddx[1cos(x)]
Step 3.3.3.9.2
Combine terms.
Step 3.3.3.9.2.1
Rewrite 1cos(x)sin(x) as a product.
elimx→(π2)-1cos(x)⋅1sin(x)ddx[1cos(x)]
Step 3.3.3.9.2.2
Multiply 1cos(x) by 1sin(x).
elimx→(π2)-1cos(x)sin(x)ddx[1cos(x)]
elimx→(π2)-1cos(x)sin(x)ddx[1cos(x)]
elimx→(π2)-1cos(x)sin(x)ddx[1cos(x)]
Step 3.3.3.10
Rewrite 1cos(x) as cos-1(x).
elimx→(π2)-1cos(x)sin(x)ddx[cos-1(x)]
Step 3.3.3.11
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x-1 and g(x)=cos(x).
Step 3.3.3.11.1
To apply the Chain Rule, set u as cos(x).
elimx→(π2)-1cos(x)sin(x)ddu[u-1]ddx[cos(x)]
Step 3.3.3.11.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=-1.
elimx→(π2)-1cos(x)sin(x)-u-2ddx[cos(x)]
Step 3.3.3.11.3
Replace all occurrences of u with cos(x).
elimx→(π2)-1cos(x)sin(x)-cos-2(x)ddx[cos(x)]
elimx→(π2)-1cos(x)sin(x)-cos-2(x)ddx[cos(x)]
Step 3.3.3.12
The derivative of cos(x) with respect to x is -sin(x).
elimx→(π2)-1cos(x)sin(x)-cos-2(x)⋅-1sin(x)
Step 3.3.3.13
Multiply -1 by -1.
elimx→(π2)-1cos(x)sin(x)1cos-2(x)sin(x)
Step 3.3.3.14
Multiply cos-2(x) by 1.
elimx→(π2)-1cos(x)sin(x)cos-2(x)sin(x)
Step 3.3.3.15
Simplify.
Step 3.3.3.15.1
Rewrite the expression using the negative exponent rule b-n=1bn.
elimx→(π2)-1cos(x)sin(x)1cos2(x)sin(x)
Step 3.3.3.15.2
Combine 1cos2(x) and sin(x).
elimx→(π2)-1cos(x)sin(x)sin(x)cos2(x)
elimx→(π2)-1cos(x)sin(x)sin(x)cos2(x)
elimx→(π2)-1cos(x)sin(x)sin(x)cos2(x)
Step 3.3.4
Multiply the numerator by the reciprocal of the denominator.
elimx→(π2)-1cos(x)sin(x)⋅cos2(x)sin(x)
Step 3.3.5
Combine factors.
Step 3.3.5.1
Multiply 1cos(x)sin(x) by cos2(x)sin(x).
elimx→(π2)-cos2(x)cos(x)sin(x)sin(x)
Step 3.3.5.2
Raise sin(x) to the power of 1.
elimx→(π2)-cos2(x)cos(x)sin1(x)sin(x)
Step 3.3.5.3
Raise sin(x) to the power of 1.
elimx→(π2)-cos2(x)cos(x)sin1(x)sin1(x)
Step 3.3.5.4
Use the power rule aman=am+n to combine exponents.
elimx→(π2)-cos2(x)cos(x)sin(x)1+1
Step 3.3.5.5
Add 1 and 1.
elimx→(π2)-cos2(x)cos(x)sin2(x)
elimx→(π2)-cos2(x)cos(x)sin2(x)
Step 3.3.6
Cancel the common factor of cos2(x) and cos(x).
Step 3.3.6.1
Factor cos(x) out of cos2(x).
elimx→(π2)-cos(x)cos(x)cos(x)sin2(x)
Step 3.3.6.2
Cancel the common factors.
Step 3.3.6.2.1
Factor cos(x) out of cos(x)sin2(x).
elimx→(π2)-cos(x)cos(x)cos(x)(sin2(x))
Step 3.3.6.2.2
Cancel the common factor.
elimx→(π2)-cos(x)cos(x)cos(x)sin2(x)
Step 3.3.6.2.3
Rewrite the expression.
elimx→(π2)-cos(x)sin2(x)
elimx→(π2)-cos(x)sin2(x)
elimx→(π2)-cos(x)sin2(x)
Step 3.3.7
Factor sin(x) out of sin2(x).
elimx→(π2)-cos(x)sin(x)sin(x)
Step 3.3.8
Separate fractions.
elimx→(π2)-1sin(x)⋅cos(x)sin(x)
Step 3.3.9
Convert from cos(x)sin(x) to cot(x).
elimx→(π2)-1sin(x)cot(x)
Step 3.3.10
Convert from 1sin(x) to csc(x).
elimx→(π2)-csc(x)cot(x)
elimx→(π2)-csc(x)cot(x)
Step 3.4
Evaluate the limit.
Step 3.4.1
Split the limit using the Product of Limits Rule on the limit as x approaches π2.
elimx→(π2)-csc(x)⋅limx→(π2)-cot(x)
Step 3.4.2
Move the limit inside the trig function because cosecant is continuous.
ecsc(limx→(π2)-x)⋅limx→(π2)-cot(x)
Step 3.4.3
Move the limit inside the trig function because cotangent is continuous.
ecsc(limx→(π2)-x)⋅cot(limx→(π2)-x)
ecsc(limx→(π2)-x)⋅cot(limx→(π2)-x)
Step 3.5
Evaluate the limits by plugging in π2 for all occurrences of x.
Step 3.5.1
Evaluate the limit of x by plugging in π2 for x.
ecsc(π2)⋅cot(limx→(π2)-x)
Step 3.5.2
Evaluate the limit of x by plugging in π2 for x.
ecsc(π2)⋅cot(π2)
ecsc(π2)⋅cot(π2)
Step 3.6
Simplify the answer.
Step 3.6.1
The exact value of csc(π2) is 1.
e1⋅cot(π2)
Step 3.6.2
Multiply cot(π2) by 1.
ecot(π2)
Step 3.6.3
The exact value of cot(π2) is 0.
e0
e0
Step 3.7
Anything raised to 0 is 1.
1
1
Step 4
Set up the limit as a right-sided limit.
limx→(π2)+ecos(x)ln(tan(x))
Step 5
Step 5.1
Evaluate the limit of ecos(x)ln(tan(x)) by plugging in π2 for x.
ecos(π2)ln(tan(π2))
Step 5.2
Rewrite tan(π2) in terms of sines and cosines.
ecos(π2)ln(sin(π2)cos(π2))
Step 5.3
The exact value of cos(π2) is 0.
ecos(π2)ln(sin(π2)0)
Step 5.4
Since ecos(π2)ln(sin(π2)0) is undefined, the limit does not exist.
Does not exist
Does not exist
Step 6
If either of the one-sided limits does not exist, the limit does not exist.
Does not exist