Enter a problem...
Calculus Examples
limx→-3tan(πx4)limx→−3tan(πx4)
Step 1
Step 1.1
Move the limit inside the trig function because tangent is continuous.
tan(limx→-3πx4)tan(limx→−3πx4)
Step 1.2
Move the term π4π4 outside of the limit because it is constant with respect to xx.
tan(π4limx→-3x)tan(π4limx→−3x)
tan(π4limx→-3x)tan(π4limx→−3x)
Step 2
Evaluate the limit of xx by plugging in -3−3 for xx.
tan(π4⋅-3)tan(π4⋅−3)
Step 3
Step 3.1
Combine π4π4 and -3−3.
tan(π⋅-34)tan(π⋅−34)
Step 3.2
Move -3−3 to the left of ππ.
tan(-3⋅π4)tan(−3⋅π4)
Step 3.3
Move the negative in front of the fraction.
tan(-3⋅π4)tan(−3⋅π4)
Step 3.4
Add full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
tan(5π4)tan(5π4)
Step 3.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
tan(π4)tan(π4)
Step 3.6
The exact value of tan(π4)tan(π4) is 11.
11
11