Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.3
Subtract from .
Step 2
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Power Rule which states that is where .
Step 2.3
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate.
Step 4.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2
Evaluate .
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3
Multiply by .
Step 4.1.3
Subtract from .
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
Divide each term in by and simplify.
Step 5.2.1
Divide each term in by .
Step 5.2.2
Simplify the left side.
Step 5.2.2.1
Cancel the common factor of .
Step 5.2.2.1.1
Cancel the common factor.
Step 5.2.2.1.2
Rewrite the expression.
Step 5.2.2.2
Cancel the common factor of .
Step 5.2.2.2.1
Cancel the common factor.
Step 5.2.2.2.2
Divide by .
Step 5.2.3
Simplify the right side.
Step 5.2.3.1
Cancel the common factor of and .
Step 5.2.3.1.1
Factor out of .
Step 5.2.3.1.2
Cancel the common factors.
Step 5.2.3.1.2.1
Factor out of .
Step 5.2.3.1.2.2
Cancel the common factor.
Step 5.2.3.1.2.3
Rewrite the expression.
Step 5.2.3.2
Divide by .
Step 5.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.4
Simplify .
Step 5.4.1
Rewrite as .
Step 5.4.2
Pull terms out from under the radical, assuming real numbers.
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Raising to any positive power yields .
Step 9.2
Multiply .
Step 9.2.1
Multiply by .
Step 9.2.2
Multiply by .
Step 10
Since the first derivative test failed, there are no local extrema.
No Local Extrema
Step 11