Enter a problem...
Calculus Examples
Step 1
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.3
Evaluate .
Step 1.3.1
Differentiate using the chain rule, which states that is where and .
Step 1.3.1.1
To apply the Chain Rule, set as .
Step 1.3.1.2
The derivative of with respect to is .
Step 1.3.1.3
Replace all occurrences of with .
Step 1.3.2
By the Sum Rule, the derivative of with respect to is .
Step 1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.4
Differentiate using the Power Rule which states that is where .
Step 1.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.6
Multiply by .
Step 1.3.7
Add and .
Step 1.3.8
Multiply by .
Step 2
Step 2.1
Differentiate.
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the chain rule, which states that is where and .
Step 2.2.2.1
To apply the Chain Rule, set as .
Step 2.2.2.2
The derivative of with respect to is .
Step 2.2.2.3
Replace all occurrences of with .
Step 2.2.3
By the Sum Rule, the derivative of with respect to is .
Step 2.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.5
Differentiate using the Power Rule which states that is where .
Step 2.2.6
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.7
Multiply by .
Step 2.2.8
Add and .
Step 2.2.9
Move to the left of .
Step 2.2.10
Multiply by .
Step 2.3
Subtract from .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Subtract from both sides of the equation.
Step 5
Step 5.1
Divide each term in by .
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of .
Step 5.2.1.1
Cancel the common factor.
Step 5.2.1.2
Divide by .
Step 5.3
Simplify the right side.
Step 5.3.1
Dividing two negative values results in a positive value.
Step 6
The range of sine is . Since does not fall in this range, there is no solution.
No solution
Step 7
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 8
Step 8.1
Add and .
Step 8.2
Evaluate .
Step 8.3
Multiply by .
Step 9
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 10
These are the local extrema for .
is a local maxima
Step 11