Enter a problem...
Calculus Examples
f(x)=x5-8x3+16x
Step 1
Step 1.1
Differentiate.
Step 1.1.1
By the Sum Rule, the derivative of x5-8x3+16x with respect to x is ddx[x5]+ddx[-8x3]+ddx[16x].
ddx[x5]+ddx[-8x3]+ddx[16x]
Step 1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=5.
5x4+ddx[-8x3]+ddx[16x]
5x4+ddx[-8x3]+ddx[16x]
Step 1.2
Evaluate ddx[-8x3].
Step 1.2.1
Since -8 is constant with respect to x, the derivative of -8x3 with respect to x is -8ddx[x3].
5x4-8ddx[x3]+ddx[16x]
Step 1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
5x4-8(3x2)+ddx[16x]
Step 1.2.3
Multiply 3 by -8.
5x4-24x2+ddx[16x]
5x4-24x2+ddx[16x]
Step 1.3
Evaluate ddx[16x].
Step 1.3.1
Since 16 is constant with respect to x, the derivative of 16x with respect to x is 16ddx[x].
5x4-24x2+16ddx[x]
Step 1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
5x4-24x2+16⋅1
Step 1.3.3
Multiply 16 by 1.
5x4-24x2+16
5x4-24x2+16
5x4-24x2+16
Step 2
Step 2.1
By the Sum Rule, the derivative of 5x4-24x2+16 with respect to x is ddx[5x4]+ddx[-24x2]+ddx[16].
f′′(x)=ddx(5x4)+ddx(-24x2)+ddx(16)
Step 2.2
Evaluate ddx[5x4].
Step 2.2.1
Since 5 is constant with respect to x, the derivative of 5x4 with respect to x is 5ddx[x4].
f′′(x)=5ddx(x4)+ddx(-24x2)+ddx(16)
Step 2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
f′′(x)=5(4x3)+ddx(-24x2)+ddx(16)
Step 2.2.3
Multiply 4 by 5.
f′′(x)=20x3+ddx(-24x2)+ddx(16)
f′′(x)=20x3+ddx(-24x2)+ddx(16)
Step 2.3
Evaluate ddx[-24x2].
Step 2.3.1
Since -24 is constant with respect to x, the derivative of -24x2 with respect to x is -24ddx[x2].
f′′(x)=20x3-24ddxx2+ddx(16)
Step 2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f′′(x)=20x3-24(2x)+ddx(16)
Step 2.3.3
Multiply 2 by -24.
f′′(x)=20x3-48x+ddx(16)
f′′(x)=20x3-48x+ddx(16)
Step 2.4
Differentiate using the Constant Rule.
Step 2.4.1
Since 16 is constant with respect to x, the derivative of 16 with respect to x is 0.
f′′(x)=20x3-48x+0
Step 2.4.2
Add 20x3-48x and 0.
f′′(x)=20x3-48x
f′′(x)=20x3-48x
f′′(x)=20x3-48x
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to 0 and solve.
5x4-24x2+16=0
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate.
Step 4.1.1.1
By the Sum Rule, the derivative of x5-8x3+16x with respect to x is ddx[x5]+ddx[-8x3]+ddx[16x].
ddx[x5]+ddx[-8x3]+ddx[16x]
Step 4.1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=5.
5x4+ddx[-8x3]+ddx[16x]
5x4+ddx[-8x3]+ddx[16x]
Step 4.1.2
Evaluate ddx[-8x3].
Step 4.1.2.1
Since -8 is constant with respect to x, the derivative of -8x3 with respect to x is -8ddx[x3].
5x4-8ddx[x3]+ddx[16x]
Step 4.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
5x4-8(3x2)+ddx[16x]
Step 4.1.2.3
Multiply 3 by -8.
5x4-24x2+ddx[16x]
5x4-24x2+ddx[16x]
Step 4.1.3
Evaluate ddx[16x].
Step 4.1.3.1
Since 16 is constant with respect to x, the derivative of 16x with respect to x is 16ddx[x].
5x4-24x2+16ddx[x]
Step 4.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
5x4-24x2+16⋅1
Step 4.1.3.3
Multiply 16 by 1.
f′(x)=5x4-24x2+16
f′(x)=5x4-24x2+16
f′(x)=5x4-24x2+16
Step 4.2
The first derivative of f(x) with respect to x is 5x4-24x2+16.
5x4-24x2+16
5x4-24x2+16
Step 5
Step 5.1
Set the first derivative equal to 0.
5x4-24x2+16=0
Step 5.2
Substitute u=x2 into the equation. This will make the quadratic formula easy to use.
5u2-24u+16=0
u=x2
Step 5.3
Factor by grouping.
Step 5.3.1
For a polynomial of the form ax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=5⋅16=80 and whose sum is b=-24.
Step 5.3.1.1
Factor -24 out of -24u.
5u2-24u+16=0
Step 5.3.1.2
Rewrite -24 as -4 plus -20
5u2+(-4-20)u+16=0
Step 5.3.1.3
Apply the distributive property.
5u2-4u-20u+16=0
5u2-4u-20u+16=0
Step 5.3.2
Factor out the greatest common factor from each group.
Step 5.3.2.1
Group the first two terms and the last two terms.
(5u2-4u)-20u+16=0
Step 5.3.2.2
Factor out the greatest common factor (GCF) from each group.
u(5u-4)-4(5u-4)=0
u(5u-4)-4(5u-4)=0
Step 5.3.3
Factor the polynomial by factoring out the greatest common factor, 5u-4.
(5u-4)(u-4)=0
(5u-4)(u-4)=0
Step 5.4
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
5u-4=0
u-4=0
Step 5.5
Set 5u-4 equal to 0 and solve for u.
Step 5.5.1
Set 5u-4 equal to 0.
5u-4=0
Step 5.5.2
Solve 5u-4=0 for u.
Step 5.5.2.1
Add 4 to both sides of the equation.
5u=4
Step 5.5.2.2
Divide each term in 5u=4 by 5 and simplify.
Step 5.5.2.2.1
Divide each term in 5u=4 by 5.
5u5=45
Step 5.5.2.2.2
Simplify the left side.
Step 5.5.2.2.2.1
Cancel the common factor of 5.
Step 5.5.2.2.2.1.1
Cancel the common factor.
5u5=45
Step 5.5.2.2.2.1.2
Divide u by 1.
u=45
u=45
u=45
u=45
u=45
u=45
Step 5.6
Set u-4 equal to 0 and solve for u.
Step 5.6.1
Set u-4 equal to 0.
u-4=0
Step 5.6.2
Add 4 to both sides of the equation.
u=4
u=4
Step 5.7
The final solution is all the values that make (5u-4)(u-4)=0 true.
u=45,4
Step 5.8
Substitute the real value of u=x2 back into the solved equation.
x2=45
(x2)1=4
Step 5.9
Solve the first equation for x.
x2=45
Step 5.10
Solve the equation for x.
Step 5.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√45
Step 5.10.2
Simplify ±√45.
Step 5.10.2.1
Rewrite √45 as √4√5.
x=±√4√5
Step 5.10.2.2
Simplify the numerator.
Step 5.10.2.2.1
Rewrite 4 as 22.
x=±√22√5
Step 5.10.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
x=±2√5
x=±2√5
Step 5.10.2.3
Multiply 2√5 by √5√5.
x=±2√5⋅√5√5
Step 5.10.2.4
Combine and simplify the denominator.
Step 5.10.2.4.1
Multiply 2√5 by √5√5.
x=±2√5√5√5
Step 5.10.2.4.2
Raise √5 to the power of 1.
x=±2√5√51√5
Step 5.10.2.4.3
Raise √5 to the power of 1.
x=±2√5√51√51
Step 5.10.2.4.4
Use the power rule aman=am+n to combine exponents.
x=±2√5√51+1
Step 5.10.2.4.5
Add 1 and 1.
x=±2√5√52
Step 5.10.2.4.6
Rewrite √52 as 5.
Step 5.10.2.4.6.1
Use n√ax=axn to rewrite √5 as 512.
x=±2√5(512)2
Step 5.10.2.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x=±2√5512⋅2
Step 5.10.2.4.6.3
Combine 12 and 2.
x=±2√5522
Step 5.10.2.4.6.4
Cancel the common factor of 2.
Step 5.10.2.4.6.4.1
Cancel the common factor.
x=±2√5522
Step 5.10.2.4.6.4.2
Rewrite the expression.
x=±2√551
x=±2√551
Step 5.10.2.4.6.5
Evaluate the exponent.
x=±2√55
x=±2√55
x=±2√55
x=±2√55
Step 5.10.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 5.10.3.1
First, use the positive value of the ± to find the first solution.
x=2√55
Step 5.10.3.2
Next, use the negative value of the ± to find the second solution.
x=-2√55
Step 5.10.3.3
The complete solution is the result of both the positive and negative portions of the solution.
x=2√55,-2√55
x=2√55,-2√55
x=2√55,-2√55
Step 5.11
Solve the second equation for x.
(x2)1=4
Step 5.12
Solve the equation for x.
Step 5.12.1
Remove parentheses.
x2=4
Step 5.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√4
Step 5.12.3
Simplify ±√4.
Step 5.12.3.1
Rewrite 4 as 22.
x=±√22
Step 5.12.3.2
Pull terms out from under the radical, assuming positive real numbers.
x=±2
x=±2
Step 5.12.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 5.12.4.1
First, use the positive value of the ± to find the first solution.
x=2
Step 5.12.4.2
Next, use the negative value of the ± to find the second solution.
x=-2
Step 5.12.4.3
The complete solution is the result of both the positive and negative portions of the solution.
x=2,-2
x=2,-2
x=2,-2
Step 5.13
The solution to 5x4-24x2+16=0 is x=2√55,-2√55,2,-2.
x=2√55,-2√55,2,-2
x=2√55,-2√55,2,-2
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
x=2√55,-2√55,2,-2
Step 8
Evaluate the second derivative at x=2√55. If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
20(2√55)3-482√55
Step 9
Step 9.1
Simplify each term.
Step 9.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 9.1.1.1
Apply the product rule to 2√55.
20(2√5)353-482√55
Step 9.1.1.2
Apply the product rule to 2√5.
2023√5353-482√55
2023√5353-482√55
Step 9.1.2
Simplify the numerator.
Step 9.1.2.1
Raise 2 to the power of 3.
208√5353-482√55
Step 9.1.2.2
Rewrite √53 as √53.
208√5353-482√55
Step 9.1.2.3
Raise 5 to the power of 3.
208√12553-482√55
Step 9.1.2.4
Rewrite 125 as 52⋅5.
Step 9.1.2.4.1
Factor 25 out of 125.
208√25(5)53-482√55
Step 9.1.2.4.2
Rewrite 25 as 52.
208√52⋅553-482√55
208√52⋅553-482√55
Step 9.1.2.5
Pull terms out from under the radical.
208⋅5√553-482√55
Step 9.1.2.6
Multiply 8 by 5.
2040√553-482√55
2040√553-482√55
Step 9.1.3
Raise 5 to the power of 3.
2040√5125-482√55
Step 9.1.4
Cancel the common factor of 5.
Step 9.1.4.1
Factor 5 out of 20.
5(4)40√5125-482√55
Step 9.1.4.2
Factor 5 out of 125.
5⋅440√55⋅25-482√55
Step 9.1.4.3
Cancel the common factor.
5⋅440√55⋅25-482√55
Step 9.1.4.4
Rewrite the expression.
440√525-482√55
440√525-482√55
Step 9.1.5
Combine 4 and 40√525.
4(40√5)25-482√55
Step 9.1.6
Multiply 40 by 4.
160√525-482√55
Step 9.1.7
Cancel the common factor of 160 and 25.
Step 9.1.7.1
Factor 5 out of 160√5.
5(32√5)25-482√55
Step 9.1.7.2
Cancel the common factors.
Step 9.1.7.2.1
Factor 5 out of 25.
5(32√5)5(5)-482√55
Step 9.1.7.2.2
Cancel the common factor.
5(32√5)5⋅5-482√55
Step 9.1.7.2.3
Rewrite the expression.
32√55-482√55
32√55-482√55
32√55-482√55
Step 9.1.8
Multiply -482√55.
Step 9.1.8.1
Combine -48 and 2√55.
32√55+-48(2√5)5
Step 9.1.8.2
Multiply 2 by -48.
32√55+-96√55
32√55+-96√55
Step 9.1.9
Move the negative in front of the fraction.
32√55-96√55
32√55-96√55
Step 9.2
Simplify terms.
Step 9.2.1
Combine the numerators over the common denominator.
32√5-96√55
Step 9.2.2
Subtract 96√5 from 32√5.
-64√55
Step 9.2.3
Move the negative in front of the fraction.
-64√55
-64√55
-64√55
Step 10
x=2√55 is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
x=2√55 is a local maximum
Step 11
Step 11.1
Replace the variable x with 2√55 in the expression.
f(2√55)=(2√55)5-8(2√55)3+16(2√55)
Step 11.2
Simplify the result.
Step 11.2.1
Simplify each term.
Step 11.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 11.2.1.1.1
Apply the product rule to 2√55.
f(2√55)=(2√5)555-8(2√55)3+16(2√55)
Step 11.2.1.1.2
Apply the product rule to 2√5.
f(2√55)=25√5555-8(2√55)3+16(2√55)
f(2√55)=25√5555-8(2√55)3+16(2√55)
Step 11.2.1.2
Simplify the numerator.
Step 11.2.1.2.1
Raise 2 to the power of 5.
f(2√55)=32√5555-8(2√55)3+16(2√55)
Step 11.2.1.2.2
Rewrite √55 as √55.
f(2√55)=32√5555-8(2√55)3+16(2√55)
Step 11.2.1.2.3
Raise 5 to the power of 5.
f(2√55)=32√312555-8(2√55)3+16(2√55)
Step 11.2.1.2.4
Rewrite 3125 as 252⋅5.
Step 11.2.1.2.4.1
Factor 625 out of 3125.
f(2√55)=32√625(5)55-8(2√55)3+16(2√55)
Step 11.2.1.2.4.2
Rewrite 625 as 252.
f(2√55)=32√252⋅555-8(2√55)3+16(2√55)
f(2√55)=32√252⋅555-8(2√55)3+16(2√55)
Step 11.2.1.2.5
Pull terms out from under the radical.
f(2√55)=32⋅(25√5)55-8(2√55)3+16(2√55)
Step 11.2.1.2.6
Multiply 32 by 25.
f(2√55)=800√555-8(2√55)3+16(2√55)
f(2√55)=800√555-8(2√55)3+16(2√55)
Step 11.2.1.3
Raise 5 to the power of 5.
f(2√55)=800√53125-8(2√55)3+16(2√55)
Step 11.2.1.4
Cancel the common factor of 800 and 3125.
Step 11.2.1.4.1
Factor 25 out of 800√5.
f(2√55)=25(32√5)3125-8(2√55)3+16(2√55)
Step 11.2.1.4.2
Cancel the common factors.
Step 11.2.1.4.2.1
Factor 25 out of 3125.
f(2√55)=25(32√5)25(125)-8(2√55)3+16(2√55)
Step 11.2.1.4.2.2
Cancel the common factor.
f(2√55)=25(32√5)25⋅125-8(2√55)3+16(2√55)
Step 11.2.1.4.2.3
Rewrite the expression.
f(2√55)=32√5125-8(2√55)3+16(2√55)
f(2√55)=32√5125-8(2√55)3+16(2√55)
f(2√55)=32√5125-8(2√55)3+16(2√55)
Step 11.2.1.5
Use the power rule (ab)n=anbn to distribute the exponent.
Step 11.2.1.5.1
Apply the product rule to 2√55.
f(2√55)=32√5125-8(2√5)353+16(2√55)
Step 11.2.1.5.2
Apply the product rule to 2√5.
f(2√55)=32√5125-823√5353+16(2√55)
f(2√55)=32√5125-823√5353+16(2√55)
Step 11.2.1.6
Simplify the numerator.
Step 11.2.1.6.1
Raise 2 to the power of 3.
f(2√55)=32√5125-88√5353+16(2√55)
Step 11.2.1.6.2
Rewrite √53 as √53.
f(2√55)=32√5125-88√5353+16(2√55)
Step 11.2.1.6.3
Raise 5 to the power of 3.
f(2√55)=32√5125-88√12553+16(2√55)
Step 11.2.1.6.4
Rewrite 125 as 52⋅5.
Step 11.2.1.6.4.1
Factor 25 out of 125.
f(2√55)=32√5125-88√25(5)53+16(2√55)
Step 11.2.1.6.4.2
Rewrite 25 as 52.
f(2√55)=32√5125-88√52⋅553+16(2√55)
f(2√55)=32√5125-88√52⋅553+16(2√55)
Step 11.2.1.6.5
Pull terms out from under the radical.
f(2√55)=32√5125-88⋅(5√5)53+16(2√55)
Step 11.2.1.6.6
Multiply 8 by 5.
f(2√55)=32√5125-840√553+16(2√55)
f(2√55)=32√5125-840√553+16(2√55)
Step 11.2.1.7
Raise 5 to the power of 3.
f(2√55)=32√5125-840√5125+16(2√55)
Step 11.2.1.8
Cancel the common factor of 40 and 125.
Step 11.2.1.8.1
Factor 5 out of 40√5.
f(2√55)=32√5125-85(8√5)125+16(2√55)
Step 11.2.1.8.2
Cancel the common factors.
Step 11.2.1.8.2.1
Factor 5 out of 125.
f(2√55)=32√5125-85(8√5)5(25)+16(2√55)
Step 11.2.1.8.2.2
Cancel the common factor.
f(2√55)=32√5125-85(8√5)5⋅25+16(2√55)
Step 11.2.1.8.2.3
Rewrite the expression.
f(2√55)=32√5125-88√525+16(2√55)
f(2√55)=32√5125-88√525+16(2√55)
f(2√55)=32√5125-88√525+16(2√55)
Step 11.2.1.9
Multiply -88√525.
Step 11.2.1.9.1
Combine -8 and 8√525.
f(2√55)=32√5125+-8(8√5)25+16(2√55)
Step 11.2.1.9.2
Multiply 8 by -8.
f(2√55)=32√5125+-64√525+16(2√55)
f(2√55)=32√5125+-64√525+16(2√55)
Step 11.2.1.10
Move the negative in front of the fraction.
f(2√55)=32√5125-64√525+16(2√55)
Step 11.2.1.11
Multiply 16(2√55).
Step 11.2.1.11.1
Combine 16 and 2√55.
f(2√55)=32√5125-64√525+16(2√5)5
Step 11.2.1.11.2
Multiply 2 by 16.
f(2√55)=32√5125-64√525+32√55
f(2√55)=32√5125-64√525+32√55
f(2√55)=32√5125-64√525+32√55
Step 11.2.2
Find the common denominator.
Step 11.2.2.1
Multiply 64√525 by 55.
f(2√55)=32√5125-(64√525⋅55)+32√55
Step 11.2.2.2
Multiply 64√525 by 55.
f(2√55)=32√5125-64√5⋅525⋅5+32√55
Step 11.2.2.3
Multiply 32√55 by 2525.
f(2√55)=32√5125-64√5⋅525⋅5+32√55⋅2525
Step 11.2.2.4
Multiply 32√55 by 2525.
f(2√55)=32√5125-64√5⋅525⋅5+32√5⋅255⋅25
Step 11.2.2.5
Reorder the factors of 25⋅5.
f(2√55)=32√5125-64√5⋅55⋅25+32√5⋅255⋅25
Step 11.2.2.6
Multiply 5 by 25.
f(2√55)=32√5125-64√5⋅5125+32√5⋅255⋅25
Step 11.2.2.7
Multiply 5 by 25.
f(2√55)=32√5125-64√5⋅5125+32√5⋅25125
f(2√55)=32√5125-64√5⋅5125+32√5⋅25125
Step 11.2.3
Combine the numerators over the common denominator.
Step 11.2.4
Simplify each term.
Step 11.2.4.1
Multiply by .
Step 11.2.4.2
Multiply by .
Step 11.2.5
Simplify by adding terms.
Step 11.2.5.1
Subtract from .
Step 11.2.5.2
Add and .
Step 11.2.6
The final answer is .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Step 13.1
Simplify each term.
Step 13.1.1
Use the power rule to distribute the exponent.
Step 13.1.1.1
Apply the product rule to .
Step 13.1.1.2
Apply the product rule to .
Step 13.1.1.3
Apply the product rule to .
Step 13.1.2
Raise to the power of .
Step 13.1.3
Simplify the numerator.
Step 13.1.3.1
Raise to the power of .
Step 13.1.3.2
Rewrite as .
Step 13.1.3.3
Raise to the power of .
Step 13.1.3.4
Rewrite as .
Step 13.1.3.4.1
Factor out of .
Step 13.1.3.4.2
Rewrite as .
Step 13.1.3.5
Pull terms out from under the radical.
Step 13.1.3.6
Multiply by .
Step 13.1.4
Raise to the power of .
Step 13.1.5
Cancel the common factor of .
Step 13.1.5.1
Move the leading negative in into the numerator.
Step 13.1.5.2
Factor out of .
Step 13.1.5.3
Factor out of .
Step 13.1.5.4
Cancel the common factor.
Step 13.1.5.5
Rewrite the expression.
Step 13.1.6
Combine and .
Step 13.1.7
Multiply by .
Step 13.1.8
Cancel the common factor of and .
Step 13.1.8.1
Factor out of .
Step 13.1.8.2
Cancel the common factors.
Step 13.1.8.2.1
Factor out of .
Step 13.1.8.2.2
Cancel the common factor.
Step 13.1.8.2.3
Rewrite the expression.
Step 13.1.9
Move the negative in front of the fraction.
Step 13.1.10
Multiply .
Step 13.1.10.1
Multiply by .
Step 13.1.10.2
Combine and .
Step 13.1.10.3
Multiply by .
Step 13.2
Simplify terms.
Step 13.2.1
Combine the numerators over the common denominator.
Step 13.2.2
Add and .
Step 14
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 15
Step 15.1
Replace the variable with in the expression.
Step 15.2
Simplify the result.
Step 15.2.1
Simplify each term.
Step 15.2.1.1
Use the power rule to distribute the exponent.
Step 15.2.1.1.1
Apply the product rule to .
Step 15.2.1.1.2
Apply the product rule to .
Step 15.2.1.1.3
Apply the product rule to .
Step 15.2.1.2
Raise to the power of .
Step 15.2.1.3
Simplify the numerator.
Step 15.2.1.3.1
Raise to the power of .
Step 15.2.1.3.2
Rewrite as .
Step 15.2.1.3.3
Raise to the power of .
Step 15.2.1.3.4
Rewrite as .
Step 15.2.1.3.4.1
Factor out of .
Step 15.2.1.3.4.2
Rewrite as .
Step 15.2.1.3.5
Pull terms out from under the radical.
Step 15.2.1.3.6
Multiply by .
Step 15.2.1.4
Raise to the power of .
Step 15.2.1.5
Cancel the common factor of and .
Step 15.2.1.5.1
Factor out of .
Step 15.2.1.5.2
Cancel the common factors.
Step 15.2.1.5.2.1
Factor out of .
Step 15.2.1.5.2.2
Cancel the common factor.
Step 15.2.1.5.2.3
Rewrite the expression.
Step 15.2.1.6
Use the power rule to distribute the exponent.
Step 15.2.1.6.1
Apply the product rule to .
Step 15.2.1.6.2
Apply the product rule to .
Step 15.2.1.6.3
Apply the product rule to .
Step 15.2.1.7
Raise to the power of .
Step 15.2.1.8
Simplify the numerator.
Step 15.2.1.8.1
Raise to the power of .
Step 15.2.1.8.2
Rewrite as .
Step 15.2.1.8.3
Raise to the power of .
Step 15.2.1.8.4
Rewrite as .
Step 15.2.1.8.4.1
Factor out of .
Step 15.2.1.8.4.2
Rewrite as .
Step 15.2.1.8.5
Pull terms out from under the radical.
Step 15.2.1.8.6
Multiply by .
Step 15.2.1.9
Raise to the power of .
Step 15.2.1.10
Cancel the common factor of and .
Step 15.2.1.10.1
Factor out of .
Step 15.2.1.10.2
Cancel the common factors.
Step 15.2.1.10.2.1
Factor out of .
Step 15.2.1.10.2.2
Cancel the common factor.
Step 15.2.1.10.2.3
Rewrite the expression.
Step 15.2.1.11
Multiply .
Step 15.2.1.11.1
Multiply by .
Step 15.2.1.11.2
Combine and .
Step 15.2.1.11.3
Multiply by .
Step 15.2.1.12
Multiply .
Step 15.2.1.12.1
Multiply by .
Step 15.2.1.12.2
Combine and .
Step 15.2.1.12.3
Multiply by .
Step 15.2.1.13
Move the negative in front of the fraction.
Step 15.2.2
Find the common denominator.
Step 15.2.2.1
Multiply by .
Step 15.2.2.2
Multiply by .
Step 15.2.2.3
Multiply by .
Step 15.2.2.4
Multiply by .
Step 15.2.2.5
Reorder the factors of .
Step 15.2.2.6
Multiply by .
Step 15.2.2.7
Multiply by .
Step 15.2.3
Combine the numerators over the common denominator.
Step 15.2.4
Simplify each term.
Step 15.2.4.1
Multiply by .
Step 15.2.4.2
Multiply by .
Step 15.2.5
Simplify by adding terms.
Step 15.2.5.1
Add and .
Step 15.2.5.2
Subtract from .
Step 15.2.5.3
Move the negative in front of the fraction.
Step 15.2.6
The final answer is .
Step 16
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 17
Step 17.1
Simplify each term.
Step 17.1.1
Raise to the power of .
Step 17.1.2
Multiply by .
Step 17.1.3
Multiply by .
Step 17.2
Subtract from .
Step 18
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 19
Step 19.1
Replace the variable with in the expression.
Step 19.2
Simplify the result.
Step 19.2.1
Simplify each term.
Step 19.2.1.1
Raise to the power of .
Step 19.2.1.2
Raise to the power of .
Step 19.2.1.3
Multiply by .
Step 19.2.1.4
Multiply by .
Step 19.2.2
Simplify by adding and subtracting.
Step 19.2.2.1
Subtract from .
Step 19.2.2.2
Add and .
Step 19.2.3
The final answer is .
Step 20
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 21
Step 21.1
Simplify each term.
Step 21.1.1
Raise to the power of .
Step 21.1.2
Multiply by .
Step 21.1.3
Multiply by .
Step 21.2
Add and .
Step 22
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 23
Step 23.1
Replace the variable with in the expression.
Step 23.2
Simplify the result.
Step 23.2.1
Simplify each term.
Step 23.2.1.1
Raise to the power of .
Step 23.2.1.2
Raise to the power of .
Step 23.2.1.3
Multiply by .
Step 23.2.1.4
Multiply by .
Step 23.2.2
Simplify by adding and subtracting.
Step 23.2.2.1
Add and .
Step 23.2.2.2
Subtract from .
Step 23.2.3
The final answer is .
Step 24
These are the local extrema for .
is a local maxima
is a local minima
is a local minima
is a local maxima
Step 25