Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
Step 2.1
Differentiate.
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Reorder terms.
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Multiply by .
Step 3.3
Differentiate using the Constant Rule.
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Add and .
Step 4
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 5
Step 5.1
Find the first derivative.
Step 5.1.1
Differentiate.
Step 5.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 5.1.1.2
Differentiate using the Power Rule which states that is where .
Step 5.1.2
Evaluate .
Step 5.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.2.2
Differentiate using the Power Rule which states that is where .
Step 5.1.2.3
Multiply by .
Step 5.1.3
Reorder terms.
Step 5.2
The first derivative of with respect to is .
Step 6
Step 6.1
Set the first derivative equal to .
Step 6.2
Subtract from both sides of the equation.
Step 6.3
Divide each term in by and simplify.
Step 6.3.1
Divide each term in by .
Step 6.3.2
Simplify the left side.
Step 6.3.2.1
Cancel the common factor of .
Step 6.3.2.1.1
Cancel the common factor.
Step 6.3.2.1.2
Divide by .
Step 6.3.3
Simplify the right side.
Step 6.3.3.1
Dividing two negative values results in a positive value.
Step 7
Step 7.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 8
Critical points to evaluate.
Step 9
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 10
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 11
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Step 11.2.1
Simplify each term.
Step 11.2.1.1
Apply the product rule to .
Step 11.2.1.2
One to any power is one.
Step 11.2.1.3
Raise to the power of .
Step 11.2.2
To write as a fraction with a common denominator, multiply by .
Step 11.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 11.2.3.1
Multiply by .
Step 11.2.3.2
Multiply by .
Step 11.2.4
Combine the numerators over the common denominator.
Step 11.2.5
Subtract from .
Step 11.2.6
The final answer is .
Step 12
These are the local extrema for .
is a local maxima
Step 13