Enter a problem...
Calculus Examples
f(x)=x+96x , [6,16]
Step 1
Step 1.1
Set the denominator in 96x equal to 0 to find where the expression is undefined.
x=0
Step 1.2
The domain is all values of x that make the expression defined.
Interval Notation:
(-∞,0)∪(0,∞)
Set-Builder Notation:
{x|x≠0}
Interval Notation:
(-∞,0)∪(0,∞)
Set-Builder Notation:
{x|x≠0}
Step 2
f(x) is continuous on [6,16].
f(x) is continuous
Step 3
The average value of function f over the interval [a,b] is defined as A(x)=1b-a∫baf(x)dx.
A(x)=1b-a∫baf(x)dx
Step 4
Substitute the actual values into the formula for the average value of a function.
A(x)=116-6(∫166x+96xdx)
Step 5
Split the single integral into multiple integrals.
A(x)=116-6(∫166xdx+∫16696xdx)
Step 6
By the Power Rule, the integral of x with respect to x is 12x2.
A(x)=116-6(12x2]166+∫16696xdx)
Step 7
Since 96 is constant with respect to x, move 96 out of the integral.
A(x)=116-6(12x2]166+96∫1661xdx)
Step 8
The integral of 1x with respect to x is ln(|x|).
A(x)=116-6(12x2]166+96(ln(|x|)]166))
Step 9
Step 9.1
Substitute and simplify.
Step 9.1.1
Evaluate 12x2 at 16 and at 6.
A(x)=116-6((12⋅162)-12⋅62+96(ln(|x|)]166))
Step 9.1.2
Evaluate ln(|x|) at 16 and at 6.
A(x)=116-6(12⋅162-12⋅62+96(ln(|16|)-ln(|6|)))
Step 9.1.3
Simplify.
Step 9.1.3.1
Raise 16 to the power of 2.
A(x)=116-6(12⋅256-12⋅62+96(ln(|16|)-ln(|6|)))
Step 9.1.3.2
Combine 12 and 256.
A(x)=116-6(2562-12⋅62+96(ln(|16|)-ln(|6|)))
Step 9.1.3.3
Cancel the common factor of 256 and 2.
Step 9.1.3.3.1
Factor 2 out of 256.
A(x)=116-6(2⋅1282-12⋅62+96(ln(|16|)-ln(|6|)))
Step 9.1.3.3.2
Cancel the common factors.
Step 9.1.3.3.2.1
Factor 2 out of 2.
A(x)=116-6(2⋅1282(1)-12⋅62+96(ln(|16|)-ln(|6|)))
Step 9.1.3.3.2.2
Cancel the common factor.
A(x)=116-6(2⋅1282⋅1-12⋅62+96(ln(|16|)-ln(|6|)))
Step 9.1.3.3.2.3
Rewrite the expression.
A(x)=116-6(1281-12⋅62+96(ln(|16|)-ln(|6|)))
Step 9.1.3.3.2.4
Divide 128 by 1.
A(x)=116-6(128-12⋅62+96(ln(|16|)-ln(|6|)))
A(x)=116-6(128-12⋅62+96(ln(|16|)-ln(|6|)))
A(x)=116-6(128-12⋅62+96(ln(|16|)-ln(|6|)))
Step 9.1.3.4
Raise 6 to the power of 2.
A(x)=116-6(128-12⋅36+96(ln(|16|)-ln(|6|)))
Step 9.1.3.5
Multiply 36 by -1.
A(x)=116-6(128-36(12)+96(ln(|16|)-ln(|6|)))
Step 9.1.3.6
Combine -36 and 12.
A(x)=116-6(128+-362+96(ln(|16|)-ln(|6|)))
Step 9.1.3.7
Cancel the common factor of -36 and 2.
Step 9.1.3.7.1
Factor 2 out of -36.
A(x)=116-6(128+2⋅-182+96(ln(|16|)-ln(|6|)))
Step 9.1.3.7.2
Cancel the common factors.
Step 9.1.3.7.2.1
Factor 2 out of 2.
A(x)=116-6(128+2⋅-182(1)+96(ln(|16|)-ln(|6|)))
Step 9.1.3.7.2.2
Cancel the common factor.
A(x)=116-6(128+2⋅-182⋅1+96(ln(|16|)-ln(|6|)))
Step 9.1.3.7.2.3
Rewrite the expression.
A(x)=116-6(128+-181+96(ln(|16|)-ln(|6|)))
Step 9.1.3.7.2.4
Divide -18 by 1.
A(x)=116-6(128-18+96(ln(|16|)-ln(|6|)))
A(x)=116-6(128-18+96(ln(|16|)-ln(|6|)))
A(x)=116-6(128-18+96(ln(|16|)-ln(|6|)))
Step 9.1.3.8
Subtract 18 from 128.
A(x)=116-6(110+96(ln(|16|)-ln(|6|)))
A(x)=116-6(110+96(ln(|16|)-ln(|6|)))
A(x)=116-6(110+96(ln(|16|)-ln(|6|)))
Step 9.2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
A(x)=116-6(110+96ln(|16||6|))
Step 9.3
Simplify.
Step 9.3.1
The absolute value is the distance between a number and zero. The distance between 0 and 16 is 16.
A(x)=116-6(110+96ln(16|6|))
Step 9.3.2
The absolute value is the distance between a number and zero. The distance between 0 and 6 is 6.
A(x)=116-6(110+96ln(166))
Step 9.3.3
Cancel the common factor of 16 and 6.
Step 9.3.3.1
Factor 2 out of 16.
A(x)=116-6(110+96ln(2(8)6))
Step 9.3.3.2
Cancel the common factors.
Step 9.3.3.2.1
Factor 2 out of 6.
A(x)=116-6(110+96ln(2⋅82⋅3))
Step 9.3.3.2.2
Cancel the common factor.
A(x)=116-6(110+96ln(2⋅82⋅3))
Step 9.3.3.2.3
Rewrite the expression.
A(x)=116-6(110+96ln(83))
A(x)=116-6(110+96ln(83))
A(x)=116-6(110+96ln(83))
A(x)=116-6(110+96ln(83))
A(x)=116-6(110+96ln(83))
Step 10
Subtract 6 from 16.
A(x)=110⋅(110+96ln(83))
Step 11
Step 11.1
Simplify 96ln(83) by moving 96 inside the logarithm.
A(x)=110⋅(110+ln((83)96))
Step 11.2
Apply the product rule to 83.
A(x)=110⋅(110+ln(896396))
A(x)=110⋅(110+ln(896396))
Step 12
Step 12.1
Apply the distributive property.
A(x)=110⋅110+110⋅ln(896396)
Step 12.2
Cancel the common factor of 10.
Step 12.2.1
Factor 10 out of 110.
A(x)=110⋅(10(11))+110⋅ln(896396)
Step 12.2.2
Cancel the common factor.
A(x)=110⋅(10⋅11)+110⋅ln(896396)
Step 12.2.3
Rewrite the expression.
A(x)=11+110⋅ln(896396)
A(x)=11+110⋅ln(896396)
A(x)=11+110⋅ln(896396)
Step 13
Simplify 110ln(896396) by moving 110 inside the logarithm.
A(x)=11+ln((896396)110)
Step 14
Step 14.1
Apply the product rule to 896396.
A(x)=11+ln((896)110(396)110)
Step 14.2
Multiply the exponents in (896)110.
Step 14.2.1
Apply the power rule and multiply exponents, (am)n=amn.
A(x)=11+ln(896(110)(396)110)
Step 14.2.2
Cancel the common factor of 2.
Step 14.2.2.1
Factor 2 out of 96.
A(x)=11+ln(82(48)(110)(396)110)
Step 14.2.2.2
Factor 2 out of 10.
A(x)=11+ln(82⋅(48(12⋅5))(396)110)
Step 14.2.2.3
Cancel the common factor.
A(x)=11+ln(82⋅(48(12⋅5))(396)110)
Step 14.2.2.4
Rewrite the expression.
A(x)=11+ln(848(15)(396)110)
A(x)=11+ln(848(15)(396)110)
Step 14.2.3
Combine 48 and 15.
A(x)=11+ln(8485(396)110)
A(x)=11+ln(8485(396)110)
Step 14.3
Multiply the exponents in (396)110.
Step 14.3.1
Apply the power rule and multiply exponents, (am)n=amn.
A(x)=11+ln(8485396(110))
Step 14.3.2
Cancel the common factor of 2.
Step 14.3.2.1
Factor 2 out of 96.
A(x)=11+ln(848532(48)(110))
Step 14.3.2.2
Factor 2 out of 10.
A(x)=11+ln(848532⋅(48(12⋅5)))
Step 14.3.2.3
Cancel the common factor.
A(x)=11+ln(848532⋅(48(12⋅5)))
Step 14.3.2.4
Rewrite the expression.
A(x)=11+ln(8485348(15))
A(x)=11+ln(8485348(15))
Step 14.3.3
Combine 48 and 15.
A(x)=11+ln(84853485)
A(x)=11+ln(84853485)
A(x)=11+ln(84853485)
Step 15