Calculus Examples

Find the Local Maxima and Minima h(x) = natural log of 2x^2+18
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
The derivative of with respect to is .
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate.
Tap for more steps...
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3
Differentiate using the Power Rule which states that is where .
Step 1.2.4
Multiply by .
Step 1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.6
Simplify terms.
Tap for more steps...
Step 1.2.6.1
Add and .
Step 1.2.6.2
Combine and .
Step 1.2.6.3
Combine and .
Step 1.2.6.4
Cancel the common factor of and .
Tap for more steps...
Step 1.2.6.4.1
Factor out of .
Step 1.2.6.4.2
Cancel the common factors.
Tap for more steps...
Step 1.2.6.4.2.1
Factor out of .
Step 1.2.6.4.2.2
Factor out of .
Step 1.2.6.4.2.3
Factor out of .
Step 1.2.6.4.2.4
Cancel the common factor.
Step 1.2.6.4.2.5
Rewrite the expression.
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Quotient Rule which states that is where and .
Step 2.3
Differentiate.
Tap for more steps...
Step 2.3.1
Differentiate using the Power Rule which states that is where .
Step 2.3.2
Multiply by .
Step 2.3.3
By the Sum Rule, the derivative of with respect to is .
Step 2.3.4
Differentiate using the Power Rule which states that is where .
Step 2.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.6
Simplify the expression.
Tap for more steps...
Step 2.3.6.1
Add and .
Step 2.3.6.2
Multiply by .
Step 2.4
Raise to the power of .
Step 2.5
Raise to the power of .
Step 2.6
Use the power rule to combine exponents.
Step 2.7
Add and .
Step 2.8
Subtract from .
Step 2.9
Combine and .
Step 2.10
Simplify.
Tap for more steps...
Step 2.10.1
Apply the distributive property.
Step 2.10.2
Simplify each term.
Tap for more steps...
Step 2.10.2.1
Multiply by .
Step 2.10.2.2
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Find the first derivative.
Tap for more steps...
Step 4.1
Find the first derivative.
Tap for more steps...
Step 4.1.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.1.1.1
To apply the Chain Rule, set as .
Step 4.1.1.2
The derivative of with respect to is .
Step 4.1.1.3
Replace all occurrences of with .
Step 4.1.2
Differentiate.
Tap for more steps...
Step 4.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.3
Differentiate using the Power Rule which states that is where .
Step 4.1.2.4
Multiply by .
Step 4.1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.6
Simplify terms.
Tap for more steps...
Step 4.1.2.6.1
Add and .
Step 4.1.2.6.2
Combine and .
Step 4.1.2.6.3
Combine and .
Step 4.1.2.6.4
Cancel the common factor of and .
Tap for more steps...
Step 4.1.2.6.4.1
Factor out of .
Step 4.1.2.6.4.2
Cancel the common factors.
Tap for more steps...
Step 4.1.2.6.4.2.1
Factor out of .
Step 4.1.2.6.4.2.2
Factor out of .
Step 4.1.2.6.4.2.3
Factor out of .
Step 4.1.2.6.4.2.4
Cancel the common factor.
Step 4.1.2.6.4.2.5
Rewrite the expression.
Step 4.2
The first derivative of with respect to is .
Step 5
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 5.1
Set the first derivative equal to .
Step 5.2
Set the numerator equal to zero.
Step 5.3
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Divide by .
Step 5.3.3
Simplify the right side.
Tap for more steps...
Step 5.3.3.1
Divide by .
Step 6
Find the values where the derivative is undefined.
Tap for more steps...
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Evaluate the second derivative.
Tap for more steps...
Step 9.1
Simplify the numerator.
Tap for more steps...
Step 9.1.1
Raising to any positive power yields .
Step 9.1.2
Multiply by .
Step 9.1.3
Add and .
Step 9.2
Simplify the denominator.
Tap for more steps...
Step 9.2.1
Raising to any positive power yields .
Step 9.2.2
Add and .
Step 9.2.3
Raise to the power of .
Step 9.3
Cancel the common factor of and .
Tap for more steps...
Step 9.3.1
Factor out of .
Step 9.3.2
Cancel the common factors.
Tap for more steps...
Step 9.3.2.1
Factor out of .
Step 9.3.2.2
Cancel the common factor.
Step 9.3.2.3
Rewrite the expression.
Step 10
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 11
Find the y-value when .
Tap for more steps...
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Tap for more steps...
Step 11.2.1
Simplify each term.
Tap for more steps...
Step 11.2.1.1
Raising to any positive power yields .
Step 11.2.1.2
Multiply by .
Step 11.2.2
Add and .
Step 11.2.3
The final answer is .
Step 12
These are the local extrema for .
is a local minima
Step 13