Enter a problem...
Calculus Examples
Step 1
Step 1.1
To apply the Chain Rule, set as .
Step 1.2
The derivative of with respect to is .
Step 1.3
Replace all occurrences of with .
Step 2
Rewrite in terms of sines and cosines.
Step 3
Multiply by the reciprocal of the fraction to divide by .
Step 4
Convert from to .
Step 5
Step 5.1
To apply the Chain Rule, set as .
Step 5.2
The derivative of with respect to is .
Step 5.3
Replace all occurrences of with .
Step 6
Step 6.1
By the Sum Rule, the derivative of with respect to is .
Step 6.2
Since is constant with respect to , the derivative of with respect to is .
Step 6.3
Differentiate using the Power Rule which states that is where .
Step 6.4
Multiply by .
Step 6.5
Since is constant with respect to , the derivative of with respect to is .
Step 6.6
Simplify the expression.
Step 6.6.1
Add and .
Step 6.6.2
Move to the left of .
Step 6.6.3
Reorder the factors of .