Calculus Examples

Find the Derivative - d/d@VAR f(x)=cos(2x)
f(x)=cos(2x)f(x)=cos(2x)
Step 1
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f(g(x))g(x)f'(g(x))g'(x) where f(x)=cos(x)f(x)=cos(x) and g(x)=2xg(x)=2x.
Tap for more steps...
Step 1.1
To apply the Chain Rule, set uu as 2x2x.
ddu[cos(u)]ddx[2x]ddu[cos(u)]ddx[2x]
Step 1.2
The derivative of cos(u)cos(u) with respect to uu is -sin(u)sin(u).
-sin(u)ddx[2x]sin(u)ddx[2x]
Step 1.3
Replace all occurrences of uu with 2x2x.
-sin(2x)ddx[2x]sin(2x)ddx[2x]
-sin(2x)ddx[2x]sin(2x)ddx[2x]
Step 2
Differentiate.
Tap for more steps...
Step 2.1
Since 22 is constant with respect to xx, the derivative of 2x2x with respect to xx is 2ddx[x]2ddx[x].
-sin(2x)(2ddx[x])sin(2x)(2ddx[x])
Step 2.2
Multiply 22 by -11.
-2sin(2x)ddx[x]2sin(2x)ddx[x]
Step 2.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
-2sin(2x)12sin(2x)1
Step 2.4
Multiply -22 by 11.
-2sin(2x)2sin(2x)
-2sin(2x)2sin(2x)
 [x2  12  π  xdx ]  x2  12  π  xdx