Enter a problem...
Calculus Examples
f(x)=cos(2x)f(x)=cos(2x)
Step 1
Step 1.1
To apply the Chain Rule, set uu as 2x2x.
ddu[cos(u)]ddx[2x]ddu[cos(u)]ddx[2x]
Step 1.2
The derivative of cos(u)cos(u) with respect to uu is -sin(u)−sin(u).
-sin(u)ddx[2x]−sin(u)ddx[2x]
Step 1.3
Replace all occurrences of uu with 2x2x.
-sin(2x)ddx[2x]−sin(2x)ddx[2x]
-sin(2x)ddx[2x]−sin(2x)ddx[2x]
Step 2
Step 2.1
Since 22 is constant with respect to xx, the derivative of 2x2x with respect to xx is 2ddx[x]2ddx[x].
-sin(2x)(2ddx[x])−sin(2x)(2ddx[x])
Step 2.2
Multiply 22 by -1−1.
-2sin(2x)ddx[x]−2sin(2x)ddx[x]
Step 2.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
-2sin(2x)⋅1−2sin(2x)⋅1
Step 2.4
Multiply -2−2 by 11.
-2sin(2x)−2sin(2x)
-2sin(2x)−2sin(2x)