Enter a problem...
Calculus Examples
Step 1
By the Sum Rule, the derivative of with respect to is .
Step 2
Step 2.1
Use to rewrite as .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 2.4
To write as a fraction with a common denominator, multiply by .
Step 2.5
Combine and .
Step 2.6
Combine the numerators over the common denominator.
Step 2.7
Simplify the numerator.
Step 2.7.1
Multiply by .
Step 2.7.2
Subtract from .
Step 2.8
Move the negative in front of the fraction.
Step 2.9
Combine and .
Step 2.10
Combine and .
Step 2.11
Move to the denominator using the negative exponent rule .
Step 3
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Rewrite as .
Step 3.3
Differentiate using the chain rule, which states that is where and .
Step 3.3.1
To apply the Chain Rule, set as .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Replace all occurrences of with .
Step 3.4
Differentiate using the Power Rule which states that is where .
Step 3.5
Multiply the exponents in .
Step 3.5.1
Apply the power rule and multiply exponents, .
Step 3.5.2
Multiply by .
Step 3.6
Multiply by .
Step 3.7
Multiply by by adding the exponents.
Step 3.7.1
Move .
Step 3.7.2
Use the power rule to combine exponents.
Step 3.7.3
Subtract from .
Step 3.8
Multiply by .
Step 3.9
Combine and .
Step 3.10
Multiply by .
Step 3.11
Combine and .
Step 3.12
Move to the denominator using the negative exponent rule .
Step 3.13
Cancel the common factor of and .
Step 3.13.1
Factor out of .
Step 3.13.2
Cancel the common factors.
Step 3.13.2.1
Factor out of .
Step 3.13.2.2
Cancel the common factor.
Step 3.13.2.3
Rewrite the expression.
Step 4
Reorder terms.