Enter a problem...
Calculus Examples
Step 1
Since is constant with respect to , the derivative of with respect to is .
Step 2
Differentiate using the Product Rule which states that is where and .
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3
Differentiate using the Power Rule which states that is where .
Step 3.4
Multiply by .
Step 3.5
Since is constant with respect to , the derivative of with respect to is .
Step 3.6
Simplify the expression.
Step 3.6.1
Add and .
Step 3.6.2
Move to the left of .
Step 4
Step 4.1
To apply the Chain Rule, set as .
Step 4.2
Differentiate using the Exponential Rule which states that is where =.
Step 4.3
Replace all occurrences of with .
Step 5
Step 5.1
Since is constant with respect to , the derivative of with respect to is .
Step 5.2
Differentiate using the Power Rule which states that is where .
Step 5.3
Simplify the expression.
Step 5.3.1
Multiply by .
Step 5.3.2
Move to the left of .
Step 6
Step 6.1
Apply the distributive property.
Step 6.2
Apply the distributive property.
Step 6.3
Apply the distributive property.
Step 6.4
Combine terms.
Step 6.4.1
Multiply by .
Step 6.4.2
Multiply by .
Step 6.4.3
Multiply by .
Step 6.4.4
Multiply by .
Step 6.4.5
Multiply by .
Step 6.4.6
Subtract from .
Step 6.5
Reorder terms.
Step 6.6
Reorder factors in .