Enter a problem...
Calculus Examples
Step 1
Step 1.1
Simplify with factoring out.
Step 1.1.1
Factor out of .
Step 1.1.2
Apply the product rule to .
Step 1.2
Differentiate using the Product Rule which states that is where and .
Step 1.3
Use the properties of logarithms to simplify the differentiation.
Step 1.3.1
Rewrite as .
Step 1.3.2
Expand by moving outside the logarithm.
Step 1.4
Differentiate using the chain rule, which states that is where and .
Step 1.4.1
To apply the Chain Rule, set as .
Step 1.4.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.4.3
Replace all occurrences of with .
Step 1.5
Differentiate using the Product Rule which states that is where and .
Step 1.6
The derivative of with respect to is .
Step 1.7
Differentiate using the Power Rule.
Step 1.7.1
Combine and .
Step 1.7.2
Cancel the common factor of .
Step 1.7.2.1
Cancel the common factor.
Step 1.7.2.2
Rewrite the expression.
Step 1.7.3
Differentiate using the Power Rule which states that is where .
Step 1.7.4
Multiply by .
Step 1.8
Differentiate using the Exponential Rule which states that is where =.
Step 1.9
Simplify.
Step 1.9.1
Apply the distributive property.
Step 1.9.2
Apply the distributive property.
Step 1.9.3
Multiply by .
Step 1.9.4
Reorder terms.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Differentiate using the Product Rule which states that is where and .
Step 2.2.2
Differentiate using the chain rule, which states that is where and .
Step 2.2.2.1
To apply the Chain Rule, set as .
Step 2.2.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.2.2.3
Replace all occurrences of with .
Step 2.2.3
Differentiate using the Product Rule which states that is where and .
Step 2.2.4
The derivative of with respect to is .
Step 2.2.5
Differentiate using the Power Rule which states that is where .
Step 2.2.6
Differentiate using the Exponential Rule which states that is where =.
Step 2.2.7
Combine and .
Step 2.2.8
Cancel the common factor of .
Step 2.2.8.1
Cancel the common factor.
Step 2.2.8.2
Rewrite the expression.
Step 2.2.9
Multiply by .
Step 2.3
Evaluate .
Step 2.3.1
Differentiate using the Product Rule which states that is where and .
Step 2.3.2
The derivative of with respect to is .
Step 2.3.3
Differentiate using the Product Rule which states that is where and .
Step 2.3.4
Differentiate using the chain rule, which states that is where and .
Step 2.3.4.1
To apply the Chain Rule, set as .
Step 2.3.4.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.3.4.3
Replace all occurrences of with .
Step 2.3.5
Differentiate using the Product Rule which states that is where and .
Step 2.3.6
The derivative of with respect to is .
Step 2.3.7
Differentiate using the Power Rule which states that is where .
Step 2.3.8
Differentiate using the Exponential Rule which states that is where =.
Step 2.3.9
Combine and .
Step 2.3.10
Combine and .
Step 2.3.11
Combine and .
Step 2.3.12
Cancel the common factor of .
Step 2.3.12.1
Cancel the common factor.
Step 2.3.12.2
Rewrite the expression.
Step 2.3.13
Multiply by .
Step 2.3.14
Reorder the factors of .
Step 2.3.15
To write as a fraction with a common denominator, multiply by .
Step 2.3.16
Combine the numerators over the common denominator.
Step 2.4
Evaluate .
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the Product Rule which states that is where and .
Step 2.4.3
Use the properties of logarithms to simplify the differentiation.
Step 2.4.3.1
Rewrite as .
Step 2.4.3.2
Expand by moving outside the logarithm.
Step 2.4.4
Differentiate using the chain rule, which states that is where and .
Step 2.4.4.1
To apply the Chain Rule, set as .
Step 2.4.4.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.4.4.3
Replace all occurrences of with .
Step 2.4.5
Differentiate using the Product Rule which states that is where and .
Step 2.4.6
The derivative of with respect to is .
Step 2.4.7
Differentiate using the Power Rule which states that is where .
Step 2.4.8
Differentiate using the Exponential Rule which states that is where =.
Step 2.4.9
Combine and .
Step 2.4.10
Cancel the common factor of .
Step 2.4.10.1
Cancel the common factor.
Step 2.4.10.2
Rewrite the expression.
Step 2.4.11
Multiply by .
Step 2.5
Simplify.
Step 2.5.1
Apply the distributive property.
Step 2.5.2
Apply the distributive property.
Step 2.5.3
Apply the distributive property.
Step 2.5.4
Apply the distributive property.
Step 2.5.5
Apply the distributive property.
Step 2.5.6
Apply the distributive property.
Step 2.5.7
Apply the distributive property.
Step 2.5.8
Apply the distributive property.
Step 2.5.9
Apply the distributive property.
Step 2.5.10
Combine terms.
Step 2.5.10.1
Multiply by .
Step 2.5.10.2
Multiply by .
Step 2.5.10.3
Raise to the power of .
Step 2.5.10.4
Raise to the power of .
Step 2.5.10.5
Use the power rule to combine exponents.
Step 2.5.10.6
Add and .
Step 2.5.10.7
To write as a fraction with a common denominator, multiply by .
Step 2.5.10.8
Combine the numerators over the common denominator.
Step 2.5.10.9
To write as a fraction with a common denominator, multiply by .
Step 2.5.10.10
Combine the numerators over the common denominator.
Step 2.5.10.11
Move .
Step 2.5.10.12
Add and .
Step 2.5.10.13
Multiply by .
Step 2.5.10.13.1
Raise to the power of .
Step 2.5.10.13.2
Use the power rule to combine exponents.
Step 2.5.10.14
To write as a fraction with a common denominator, multiply by .
Step 2.5.10.15
Combine the numerators over the common denominator.
Step 2.5.10.16
Multiply by .
Step 2.5.10.17
Raise to the power of .
Step 2.5.10.18
Raise to the power of .
Step 2.5.10.19
Use the power rule to combine exponents.
Step 2.5.10.20
Add and .
Step 2.5.10.21
To write as a fraction with a common denominator, multiply by .
Step 2.5.10.22
Combine and .
Step 2.5.10.23
Combine the numerators over the common denominator.
Step 2.5.10.24
Move .
Step 2.5.10.25
Add and .
Step 2.5.10.26
Multiply by .
Step 2.5.10.26.1
Raise to the power of .
Step 2.5.10.26.2
Use the power rule to combine exponents.
Step 2.5.10.27
To write as a fraction with a common denominator, multiply by .
Step 2.5.10.28
Combine and .
Step 2.5.10.29
Combine the numerators over the common denominator.
Step 2.5.10.30
Move .
Step 2.5.10.31
Add and .
Step 2.5.10.32
Multiply by .
Step 2.5.10.32.1
Raise to the power of .
Step 2.5.10.32.2
Use the power rule to combine exponents.
Step 2.5.10.33
To write as a fraction with a common denominator, multiply by .
Step 2.5.10.34
Combine the numerators over the common denominator.
Step 2.5.10.35
Raise to the power of .
Step 2.5.10.36
Use the power rule to combine exponents.
Step 2.5.11
Reorder terms.
Step 2.5.12
Reorder factors in .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Simplify with factoring out.
Step 4.1.1.1
Factor out of .
Step 4.1.1.2
Apply the product rule to .
Step 4.1.2
Differentiate using the Product Rule which states that is where and .
Step 4.1.3
Use the properties of logarithms to simplify the differentiation.
Step 4.1.3.1
Rewrite as .
Step 4.1.3.2
Expand by moving outside the logarithm.
Step 4.1.4
Differentiate using the chain rule, which states that is where and .
Step 4.1.4.1
To apply the Chain Rule, set as .
Step 4.1.4.2
Differentiate using the Exponential Rule which states that is where =.
Step 4.1.4.3
Replace all occurrences of with .
Step 4.1.5
Differentiate using the Product Rule which states that is where and .
Step 4.1.6
The derivative of with respect to is .
Step 4.1.7
Differentiate using the Power Rule.
Step 4.1.7.1
Combine and .
Step 4.1.7.2
Cancel the common factor of .
Step 4.1.7.2.1
Cancel the common factor.
Step 4.1.7.2.2
Rewrite the expression.
Step 4.1.7.3
Differentiate using the Power Rule which states that is where .
Step 4.1.7.4
Multiply by .
Step 4.1.8
Differentiate using the Exponential Rule which states that is where =.
Step 4.1.9
Simplify.
Step 4.1.9.1
Apply the distributive property.
Step 4.1.9.2
Apply the distributive property.
Step 4.1.9.3
Multiply by .
Step 4.1.9.4
Reorder terms.
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
Graph each side of the equation. The solution is the x-value of the point of intersection.
Step 6
Step 6.1
Set the argument in less than or equal to to find where the expression is undefined.
Step 6.2
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Remove parentheses.
Step 9.2
Simplify the numerator.
Step 9.2.1
Add and .
Step 9.2.2
Raise to the power of .
Step 9.2.3
Multiply by .
Step 9.2.4
Simplify by moving inside the logarithm.
Step 9.2.5
Exponentiation and log are inverse functions.
Step 9.2.6
Raise to the power of .
Step 9.2.7
Multiply by .
Step 9.2.8
Simplify by moving inside the logarithm.
Step 9.2.9
Raise to the power of .
Step 9.2.10
Add and .
Step 9.2.11
Raise to the power of .
Step 9.2.12
Multiply by .
Step 9.2.13
Simplify by moving inside the logarithm.
Step 9.2.14
Exponentiation and log are inverse functions.
Step 9.2.15
Raise to the power of .
Step 9.2.16
Multiply by .
Step 9.2.17
Simplify by moving inside the logarithm.
Step 9.2.18
Raise to the power of .
Step 9.2.19
Raise to the power of .
Step 9.2.20
Multiply by .
Step 9.2.21
Simplify by moving inside the logarithm.
Step 9.2.22
Exponentiation and log are inverse functions.
Step 9.2.23
Raise to the power of .
Step 9.2.24
Multiply by .
Step 9.2.25
Raise to the power of .
Step 9.2.26
Simplify by moving inside the logarithm.
Step 9.2.27
Exponentiation and log are inverse functions.
Step 9.2.28
Raise to the power of .
Step 9.2.29
Multiply by .
Step 9.2.30
Raise to the power of .
Step 9.2.31
Multiply by .
Step 9.2.32
Simplify by moving inside the logarithm.
Step 9.2.33
Exponentiation and log are inverse functions.
Step 9.2.34
Raise to the power of .
Step 9.2.35
Multiply by .
Step 9.2.36
Multiply by .
Step 9.2.37
Add and .
Step 9.2.38
Raise to the power of .
Step 9.2.39
Multiply by .
Step 9.2.40
Simplify by moving inside the logarithm.
Step 9.2.41
Exponentiation and log are inverse functions.
Step 9.2.42
Raise to the power of .
Step 9.2.43
Multiply by .
Step 9.2.44
Simplify by moving inside the logarithm.
Step 9.2.45
Raise to the power of .
Step 9.2.46
Raise to the power of .
Step 9.2.47
Add and .
Step 9.2.48
Raise to the power of .
Step 9.2.49
Multiply by .
Step 9.2.50
Multiply by .
Step 9.2.51
Use the product property of logarithms, .
Step 9.2.52
Add and .
Step 9.2.53
Add and .
Step 9.2.54
Add and .
Step 9.2.55
Add and .
Step 9.2.56
Add and .
Step 9.3
Divide by .
Step 10
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 11
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Step 11.2.1
Multiply by .
Step 11.2.2
Raise to the power of .
Step 11.2.3
The final answer is .
Step 12
These are the local extrema for .
is a local minima
Step 13