Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
To write as a fraction with a common denominator, multiply by .
Step 1.2.4
Combine and .
Step 1.2.5
Combine the numerators over the common denominator.
Step 1.2.6
Simplify the numerator.
Step 1.2.6.1
Multiply by .
Step 1.2.6.2
Subtract from .
Step 1.2.7
Move the negative in front of the fraction.
Step 1.2.8
Combine and .
Step 1.2.9
Combine and .
Step 1.2.10
Multiply by .
Step 1.2.11
Move to the denominator using the negative exponent rule .
Step 1.3
Simplify.
Step 1.3.1
Add and .
Step 1.3.2
Factor out of .
Step 1.3.3
Factor out of .
Step 1.3.4
Separate fractions.
Step 1.3.5
Divide by .
Step 1.3.6
Combine and .
Step 2
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Apply basic rules of exponents.
Step 2.2.1
Rewrite as .
Step 2.2.2
Multiply the exponents in .
Step 2.2.2.1
Apply the power rule and multiply exponents, .
Step 2.2.2.2
Combine and .
Step 2.2.2.3
Move the negative in front of the fraction.
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 2.4
To write as a fraction with a common denominator, multiply by .
Step 2.5
Combine and .
Step 2.6
Combine the numerators over the common denominator.
Step 2.7
Simplify the numerator.
Step 2.7.1
Multiply by .
Step 2.7.2
Subtract from .
Step 2.8
Move the negative in front of the fraction.
Step 2.9
Combine and .
Step 2.10
Multiply by .
Step 2.11
Combine and .
Step 2.12
Simplify the expression.
Step 2.12.1
Move to the denominator using the negative exponent rule .
Step 2.12.2
Move the negative in front of the fraction.
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate.
Step 4.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2
Evaluate .
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.4
Combine and .
Step 4.1.2.5
Combine the numerators over the common denominator.
Step 4.1.2.6
Simplify the numerator.
Step 4.1.2.6.1
Multiply by .
Step 4.1.2.6.2
Subtract from .
Step 4.1.2.7
Move the negative in front of the fraction.
Step 4.1.2.8
Combine and .
Step 4.1.2.9
Combine and .
Step 4.1.2.10
Multiply by .
Step 4.1.2.11
Move to the denominator using the negative exponent rule .
Step 4.1.3
Simplify.
Step 4.1.3.1
Add and .
Step 4.1.3.2
Factor out of .
Step 4.1.3.3
Factor out of .
Step 4.1.3.4
Separate fractions.
Step 4.1.3.5
Divide by .
Step 4.1.3.6
Combine and .
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
Set the numerator equal to zero.
Step 5.3
Since , there are no solutions.
No solution
No solution
Step 6
Step 6.1
Convert expressions with fractional exponents to radicals.
Step 6.1.1
Apply the rule to rewrite the exponentiation as a radical.
Step 6.1.2
Anything raised to is the base itself.
Step 6.2
Set the denominator in equal to to find where the expression is undefined.
Step 6.3
Solve for .
Step 6.3.1
To remove the radical on the left side of the equation, raise both sides of the equation to the power of .
Step 6.3.2
Simplify each side of the equation.
Step 6.3.2.1
Use to rewrite as .
Step 6.3.2.2
Simplify the left side.
Step 6.3.2.2.1
Simplify .
Step 6.3.2.2.1.1
Multiply the exponents in .
Step 6.3.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 6.3.2.2.1.1.2
Cancel the common factor of .
Step 6.3.2.2.1.1.2.1
Cancel the common factor.
Step 6.3.2.2.1.1.2.2
Rewrite the expression.
Step 6.3.2.2.1.2
Simplify.
Step 6.3.2.3
Simplify the right side.
Step 6.3.2.3.1
Raising to any positive power yields .
Step 6.4
Set the radicand in less than to find where the expression is undefined.
Step 6.5
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Simplify the expression.
Step 9.1.1
Rewrite as .
Step 9.1.2
Apply the power rule and multiply exponents, .
Step 9.2
Cancel the common factor of .
Step 9.2.1
Cancel the common factor.
Step 9.2.2
Rewrite the expression.
Step 9.3
Simplify the expression.
Step 9.3.1
Raising to any positive power yields .
Step 9.3.2
Multiply by .
Step 9.3.3
The expression contains a division by . The expression is undefined.
Undefined
Step 9.4
The expression contains a division by . The expression is undefined.
Undefined
Undefined
Step 10
Since the first derivative test failed, there are no local extrema.
No Local Extrema
Step 11