Calculus Examples

Find the Function R'(x)=600-0.6x
R(x)=600-0.6x
Step 1
The function R(x) can be found by evaluating the indefinite integral of the derivative R(x).
R(x)=R(x)dx
Step 2
Split the single integral into multiple integrals.
600dx+-0.6xdx
Step 3
Apply the constant rule.
600x+C+-0.6xdx
Step 4
Since -0.6 is constant with respect to x, move -0.6 out of the integral.
600x+C-0.6xdx
Step 5
By the Power Rule, the integral of x with respect to x is 12x2.
600x+C-0.6(12x2+C)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Simplify.
600x-0.6(12)x2+C
Step 6.2
Simplify.
Tap for more steps...
Step 6.2.1
Combine -0.6 and 12.
600x+-0.62x2+C
Step 6.2.2
Move the negative in front of the fraction.
600x-0.62x2+C
600x-0.62x2+C
Step 6.3
Simplify.
Tap for more steps...
Step 6.3.1
Divide 0.6 by 2.
600x-10.3x2+C
Step 6.3.2
Multiply -1 by 0.3.
600x-0.3x2+C
600x-0.3x2+C
600x-0.3x2+C
Step 7
The function R if derived from the integral of the derivative of the function. This is valid by the fundamental theorem of calculus.
R(x)=600x-0.3x2+C
 [x2  12  π  xdx ]