Calculus Examples

Find the Function s'(t)=t(t-1)^2
Step 1
The function can be found by evaluating the indefinite integral of the derivative .
Step 2
Let . Then . Rewrite using and .
Tap for more steps...
Step 2.1
Let . Find .
Tap for more steps...
Step 2.1.1
Differentiate .
Step 2.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.1.3
Differentiate using the Power Rule which states that is where .
Step 2.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.5
Add and .
Step 2.2
Rewrite the problem using and .
Step 3
Expand .
Tap for more steps...
Step 3.1
Apply the distributive property.
Step 3.2
Raise to the power of .
Step 3.3
Use the power rule to combine exponents.
Step 3.4
Add and .
Step 3.5
Multiply by .
Step 4
Split the single integral into multiple integrals.
Step 5
By the Power Rule, the integral of with respect to is .
Step 6
By the Power Rule, the integral of with respect to is .
Step 7
Simplify.
Step 8
Replace all occurrences of with .
Step 9
The function if derived from the integral of the derivative of the function. This is valid by the fundamental theorem of calculus.