Enter a problem...
Calculus Examples
limx→5x2-3x-10x2-10x+25limx→5x2−3x−10x2−10x+25
Step 1
Split the limit using the Sum of Limits Rule on the limit as xx approaches 55.
limx→5x2-limx→53x-limx→510x2-10x+25limx→5x2−limx→53x−limx→510x2−10x+25
Step 2
Move the exponent 22 from x2x2 outside the limit using the Limits Power Rule.
(limx→5x)2-limx→53x-limx→510x2-10x+25(limx→5x)2−limx→53x−limx→510x2−10x+25
Step 3
Move the term 33 outside of the limit because it is constant with respect to xx.
(limx→5x)2-3limx→5x-limx→510x2-10x+25(limx→5x)2−3limx→5x−limx→510x2−10x+25
Step 4
Evaluate the limit of 1010 which is constant as xx approaches 55.
(limx→5x)2-3limx→5x-1⋅10x2-10x+25(limx→5x)2−3limx→5x−1⋅10x2−10x+25
Step 5
Step 5.1
Evaluate the limit of xx by plugging in 55 for xx.
52-3limx→5x-1⋅10x2-10x+2552−3limx→5x−1⋅10x2−10x+25
Step 5.2
Evaluate the limit of xx by plugging in 55 for xx.
52-3⋅5-1⋅10x2-10x+2552−3⋅5−1⋅10x2−10x+25
52-3⋅5-1⋅10x2-10x+2552−3⋅5−1⋅10x2−10x+25
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Raise 55 to the power of 22.
25-3⋅5-1⋅10x2-10x+2525−3⋅5−1⋅10x2−10x+25
Step 6.1.2
Multiply -3−3 by 55.
25-15-1⋅10x2-10x+2525−15−1⋅10x2−10x+25
Step 6.1.3
Multiply -1−1 by 1010.
25-15-10x2-10x+2525−15−10x2−10x+25
Step 6.1.4
Subtract 1515 from 2525.
10-10x2-10x+2510−10x2−10x+25
Step 6.1.5
Subtract 1010 from 1010.
0x2-10x+250x2−10x+25
0x2-10x+250x2−10x+25
Step 6.2
Factor using the perfect square rule.
Step 6.2.1
Rewrite 2525 as 5252.
0x2-10x+520x2−10x+52
Step 6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
10x=2⋅x⋅510x=2⋅x⋅5
Step 6.2.3
Rewrite the polynomial.
0x2-2⋅x⋅5+520x2−2⋅x⋅5+52
Step 6.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2a2−2ab+b2=(a−b)2, where a=xa=x and b=5b=5.
0(x-5)20(x−5)2
0(x-5)20(x−5)2
Step 6.3
Divide 00 by (x-5)2(x−5)2.
00
00