Calculus Examples

Find the Tangent Line at x=4 f(x)=8 square root of x , x=4
,
Step 1
Find the corresponding -value to .
Tap for more steps...
Step 1.1
Substitute in for .
Step 1.2
Simplify .
Tap for more steps...
Step 1.2.1
Remove parentheses.
Step 1.2.2
Rewrite as .
Step 1.2.3
Pull terms out from under the radical, assuming positive real numbers.
Step 1.2.4
Multiply by .
Step 2
Find the first derivative and evaluate at and to find the slope of the tangent line.
Tap for more steps...
Step 2.1
Use to rewrite as .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 2.4
To write as a fraction with a common denominator, multiply by .
Step 2.5
Combine and .
Step 2.6
Combine the numerators over the common denominator.
Step 2.7
Simplify the numerator.
Tap for more steps...
Step 2.7.1
Multiply by .
Step 2.7.2
Subtract from .
Step 2.8
Move the negative in front of the fraction.
Step 2.9
Combine and .
Step 2.10
Combine and .
Step 2.11
Move to the denominator using the negative exponent rule .
Step 2.12
Factor out of .
Step 2.13
Cancel the common factors.
Tap for more steps...
Step 2.13.1
Factor out of .
Step 2.13.2
Cancel the common factor.
Step 2.13.3
Rewrite the expression.
Step 2.14
Evaluate the derivative at .
Step 2.15
Simplify.
Tap for more steps...
Step 2.15.1
Move to the numerator using the negative exponent rule .
Step 2.15.2
Multiply by by adding the exponents.
Tap for more steps...
Step 2.15.2.1
Multiply by .
Tap for more steps...
Step 2.15.2.1.1
Raise to the power of .
Step 2.15.2.1.2
Use the power rule to combine exponents.
Step 2.15.2.2
Write as a fraction with a common denominator.
Step 2.15.2.3
Combine the numerators over the common denominator.
Step 2.15.2.4
Subtract from .
Step 2.15.3
Simplify the expression.
Tap for more steps...
Step 2.15.3.1
Rewrite as .
Step 2.15.3.2
Apply the power rule and multiply exponents, .
Step 2.15.4
Cancel the common factor of .
Tap for more steps...
Step 2.15.4.1
Cancel the common factor.
Step 2.15.4.2
Rewrite the expression.
Step 2.15.5
Evaluate the exponent.
Step 3
Plug the slope and point values into the point-slope formula and solve for .
Tap for more steps...
Step 3.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 3.2
Simplify the equation and keep it in point-slope form.
Step 3.3
Solve for .
Tap for more steps...
Step 3.3.1
Simplify .
Tap for more steps...
Step 3.3.1.1
Rewrite.
Step 3.3.1.2
Simplify by adding zeros.
Step 3.3.1.3
Apply the distributive property.
Step 3.3.1.4
Multiply by .
Step 3.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.3.2.1
Add to both sides of the equation.
Step 3.3.2.2
Add and .
Step 4