Calculus Examples

Evaluate the Summation sum from n=1 to infinity of (-1/3)^(n-1)
n=1(-13)n-1
Step 1
The sum of an infinite geometric series can be found using the formula a1-r where a is the first term and r is the ratio between successive terms.
Step 2
Find the ratio of successive terms by plugging into the formula r=an+1an and simplifying.
Tap for more steps...
Step 2.1
Substitute an and an+1 into the formula for r.
r=(-13)n+1-1(-13)n-1
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Cancel the common factor of (-13)n+1-1 and (-13)n-1.
Tap for more steps...
Step 2.2.1.1
Factor (-13)n-1 out of (-13)n+1-1.
r=(-13)n-1(-13)n+0-(n-1)(-13)n-1
Step 2.2.1.2
Cancel the common factors.
Tap for more steps...
Step 2.2.1.2.1
Multiply by 1.
r=(-13)n-1(-13)n+0-(n-1)(-13)n-11
Step 2.2.1.2.2
Cancel the common factor.
r=(-13)n-1(-13)n+0-(n-1)(-13)n-11
Step 2.2.1.2.3
Rewrite the expression.
r=(-13)n+0-(n-1)1
Step 2.2.1.2.4
Divide (-13)n+0-(n-1) by 1.
r=(-13)n+0-(n-1)
r=(-13)n+0-(n-1)
r=(-13)n+0-(n-1)
Step 2.2.2
Add n and 0.
r=(-13)n-(n-1)
Step 2.2.3
Simplify each term.
Tap for more steps...
Step 2.2.3.1
Apply the distributive property.
r=(-13)n-n--1
Step 2.2.3.2
Multiply -1 by -1.
r=(-13)n-n+1
r=(-13)n-n+1
Step 2.2.4
Subtract n from n.
r=(-13)0+1
Step 2.2.5
Add 0 and 1.
r=(-13)1
Step 2.2.6
Simplify.
r=-13
r=-13
r=-13
Step 3
Since |r|<1, the series converges.
Step 4
Find the first term in the series by substituting in the lower bound and simplifying.
Tap for more steps...
Step 4.1
Substitute 1 for n into (-13)n-1.
a=(-13)1-1
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Subtract 1 from 1.
a=(-13)0
Step 4.2.2
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 4.2.2.1
Apply the product rule to -13.
a=(-1)0(13)0
Step 4.2.2.2
Apply the product rule to 13.
a=(-1)01030
a=(-1)01030
Step 4.2.3
Anything raised to 0 is 1.
a=11030
Step 4.2.4
Multiply 1030 by 1.
a=1030
Step 4.2.5
Anything raised to 0 is 1.
a=130
Step 4.2.6
Anything raised to 0 is 1.
a=11
Step 4.2.7
Divide 1 by 1.
a=1
a=1
a=1
Step 5
Substitute the values of the ratio and first term into the sum formula.
11--13
Step 6
Simplify.
Tap for more steps...
Step 6.1
Simplify the denominator.
Tap for more steps...
Step 6.1.1
Multiply --13.
Tap for more steps...
Step 6.1.1.1
Multiply -1 by -1.
11+1(13)
Step 6.1.1.2
Multiply 13 by 1.
11+13
11+13
Step 6.1.2
Write 1 as a fraction with a common denominator.
133+13
Step 6.1.3
Combine the numerators over the common denominator.
13+13
Step 6.1.4
Add 3 and 1.
143
143
Step 6.2
Multiply the numerator by the reciprocal of the denominator.
1(34)
Step 6.3
Multiply 34 by 1.
34
34
Step 7
The result can be shown in multiple forms.
Exact Form:
34
Decimal Form:
0.75
 [x2  12  π  xdx ]