Calculus Examples

Evaluate the Limit limit as x approaches 0 of (7^(2x)-1)/(7^x-1)
Step 1
Apply L'Hospital's rule.
Tap for more steps...
Step 1.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.1.2.1
Evaluate the limit.
Tap for more steps...
Step 1.1.2.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.2.1.2
Move the limit into the exponent.
Step 1.1.2.1.3
Move the term outside of the limit because it is constant with respect to .
Step 1.1.2.1.4
Evaluate the limit of which is constant as approaches .
Step 1.1.2.2
Evaluate the limit of by plugging in for .
Step 1.1.2.3
Simplify the answer.
Tap for more steps...
Step 1.1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.1.2.3.1.1
Multiply by .
Step 1.1.2.3.1.2
Anything raised to is .
Step 1.1.2.3.1.3
Multiply by .
Step 1.1.2.3.2
Subtract from .
Step 1.1.3
Evaluate the limit of the denominator.
Tap for more steps...
Step 1.1.3.1
Evaluate the limit.
Tap for more steps...
Step 1.1.3.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.3.1.2
Move the limit into the exponent.
Step 1.1.3.1.3
Evaluate the limit of which is constant as approaches .
Step 1.1.3.2
Evaluate the limit of by plugging in for .
Step 1.1.3.3
Simplify the answer.
Tap for more steps...
Step 1.1.3.3.1
Simplify each term.
Tap for more steps...
Step 1.1.3.3.1.1
Anything raised to is .
Step 1.1.3.3.1.2
Multiply by .
Step 1.1.3.3.2
Subtract from .
Step 1.1.3.3.3
The expression contains a division by . The expression is undefined.
Undefined
Step 1.1.3.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 1.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 1.3.1
Differentiate the numerator and denominator.
Step 1.3.2
By the Sum Rule, the derivative of with respect to is .
Step 1.3.3
Evaluate .
Tap for more steps...
Step 1.3.3.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.3.3.1.1
To apply the Chain Rule, set as .
Step 1.3.3.1.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.3.3.1.3
Replace all occurrences of with .
Step 1.3.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.3.3
Differentiate using the Power Rule which states that is where .
Step 1.3.3.4
Multiply by .
Step 1.3.3.5
Move to the left of .
Step 1.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.5
Add and .
Step 1.3.6
By the Sum Rule, the derivative of with respect to is .
Step 1.3.7
Differentiate using the Exponential Rule which states that is where =.
Step 1.3.8
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.9
Add and .
Step 1.4
Reduce.
Tap for more steps...
Step 1.4.1
Cancel the common factor of and .
Tap for more steps...
Step 1.4.1.1
Factor out of .
Step 1.4.1.2
Cancel the common factors.
Tap for more steps...
Step 1.4.1.2.1
Factor out of .
Step 1.4.1.2.2
Cancel the common factor.
Step 1.4.1.2.3
Rewrite the expression.
Step 1.4.2
Cancel the common factor of .
Tap for more steps...
Step 1.4.2.1
Cancel the common factor.
Step 1.4.2.2
Divide by .
Step 2
Evaluate the limit.
Tap for more steps...
Step 2.1
Move the term outside of the limit because it is constant with respect to .
Step 2.2
Move the limit into the exponent.
Step 3
Evaluate the limit of by plugging in for .
Step 4
Simplify the answer.
Tap for more steps...
Step 4.1
Anything raised to is .
Step 4.2
Multiply by .