Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Differentiate both sides of the equation.
Step 1.2
Differentiate the left side of the equation.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Evaluate .
Step 1.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2.2
Differentiate using the Product Rule which states that is where and .
Step 1.2.2.3
Differentiate using the chain rule, which states that is where and .
Step 1.2.2.3.1
To apply the Chain Rule, set as .
Step 1.2.2.3.2
Differentiate using the Power Rule which states that is where .
Step 1.2.2.3.3
Replace all occurrences of with .
Step 1.2.2.4
Rewrite as .
Step 1.2.2.5
Differentiate using the Power Rule which states that is where .
Step 1.2.2.6
Move to the left of .
Step 1.2.2.7
Multiply by .
Step 1.2.3
Evaluate .
Step 1.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3.2
Differentiate using the Product Rule which states that is where and .
Step 1.2.3.3
Rewrite as .
Step 1.2.3.4
Differentiate using the Power Rule which states that is where .
Step 1.2.3.5
Multiply by .
Step 1.2.4
Simplify.
Step 1.2.4.1
Apply the distributive property.
Step 1.2.4.2
Apply the distributive property.
Step 1.2.4.3
Multiply by .
Step 1.2.4.4
Reorder terms.
Step 1.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.4
Reform the equation by setting the left side equal to the right side.
Step 1.5
Solve for .
Step 1.5.1
Move all terms not containing to the right side of the equation.
Step 1.5.1.1
Subtract from both sides of the equation.
Step 1.5.1.2
Subtract from both sides of the equation.
Step 1.5.2
Factor out of .
Step 1.5.2.1
Factor out of .
Step 1.5.2.2
Factor out of .
Step 1.5.2.3
Factor out of .
Step 1.5.3
Divide each term in by and simplify.
Step 1.5.3.1
Divide each term in by .
Step 1.5.3.2
Simplify the left side.
Step 1.5.3.2.1
Cancel the common factor of .
Step 1.5.3.2.1.1
Cancel the common factor.
Step 1.5.3.2.1.2
Rewrite the expression.
Step 1.5.3.2.2
Cancel the common factor of .
Step 1.5.3.2.2.1
Cancel the common factor.
Step 1.5.3.2.2.2
Divide by .
Step 1.5.3.3
Simplify the right side.
Step 1.5.3.3.1
Simplify each term.
Step 1.5.3.3.1.1
Move the negative in front of the fraction.
Step 1.5.3.3.1.2
Move the negative in front of the fraction.
Step 1.6
Replace with .
Step 1.7
Evaluate at and .
Step 1.7.1
Replace the variable with in the expression.
Step 1.7.2
Replace the variable with in the expression.
Step 1.7.3
Simplify terms.
Step 1.7.3.1
Combine the numerators over the common denominator.
Step 1.7.3.2
Simplify each term.
Step 1.7.3.2.1
One to any power is one.
Step 1.7.3.2.2
Multiply by .
Step 1.7.3.2.3
Multiply by .
Step 1.7.3.3
Subtract from .
Step 1.7.4
Simplify the denominator.
Step 1.7.4.1
One to any power is one.
Step 1.7.4.2
Multiply by .
Step 1.7.4.3
Add and .
Step 1.7.5
Simplify the expression.
Step 1.7.5.1
Multiply by .
Step 1.7.5.2
Move the negative in front of the fraction.
Step 2
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Step 2.3.1
Simplify .
Step 2.3.1.1
Rewrite.
Step 2.3.1.2
Simplify terms.
Step 2.3.1.2.1
Apply the distributive property.
Step 2.3.1.2.2
Combine and .
Step 2.3.1.2.3
Cancel the common factor of .
Step 2.3.1.2.3.1
Move the leading negative in into the numerator.
Step 2.3.1.2.3.2
Factor out of .
Step 2.3.1.2.3.3
Factor out of .
Step 2.3.1.2.3.4
Cancel the common factor.
Step 2.3.1.2.3.5
Rewrite the expression.
Step 2.3.1.2.4
Combine and .
Step 2.3.1.2.5
Multiply by .
Step 2.3.1.3
Move to the left of .
Step 2.3.2
Move all terms not containing to the right side of the equation.
Step 2.3.2.1
Add to both sides of the equation.
Step 2.3.2.2
Write as a fraction with a common denominator.
Step 2.3.2.3
Combine the numerators over the common denominator.
Step 2.3.2.4
Add and .
Step 2.3.3
Write in form.
Step 2.3.3.1
Reorder terms.
Step 2.3.3.2
Remove parentheses.
Step 3