Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Differentiate both sides of the equation.
Step 1.2
Differentiate the left side of the equation.
Step 1.2.1
Differentiate using the chain rule, which states that is where and .
Step 1.2.1.1
To apply the Chain Rule, set as .
Step 1.2.1.2
Differentiate using the Power Rule which states that is where .
Step 1.2.1.3
Replace all occurrences of with .
Step 1.2.2
Rewrite as .
Step 1.3
Differentiate the right side of the equation.
Step 1.3.1
By the Sum Rule, the derivative of with respect to is .
Step 1.3.2
Evaluate .
Step 1.3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2.2
Differentiate using the Power Rule which states that is where .
Step 1.3.2.3
Multiply by .
Step 1.3.3
Evaluate .
Step 1.3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3.3
Multiply by .
Step 1.4
Reform the equation by setting the left side equal to the right side.
Step 1.5
Divide each term in by and simplify.
Step 1.5.1
Divide each term in by .
Step 1.5.2
Simplify the left side.
Step 1.5.2.1
Cancel the common factor of .
Step 1.5.2.1.1
Cancel the common factor.
Step 1.5.2.1.2
Rewrite the expression.
Step 1.5.2.2
Cancel the common factor of .
Step 1.5.2.2.1
Cancel the common factor.
Step 1.5.2.2.2
Divide by .
Step 1.5.3
Simplify the right side.
Step 1.5.3.1
Simplify each term.
Step 1.5.3.1.1
Cancel the common factor of and .
Step 1.5.3.1.1.1
Factor out of .
Step 1.5.3.1.1.2
Cancel the common factors.
Step 1.5.3.1.1.2.1
Factor out of .
Step 1.5.3.1.1.2.2
Cancel the common factor.
Step 1.5.3.1.1.2.3
Rewrite the expression.
Step 1.5.3.1.2
Cancel the common factor of and .
Step 1.5.3.1.2.1
Factor out of .
Step 1.5.3.1.2.2
Cancel the common factors.
Step 1.5.3.1.2.2.1
Factor out of .
Step 1.5.3.1.2.2.2
Cancel the common factor.
Step 1.5.3.1.2.2.3
Rewrite the expression.
Step 1.5.3.1.3
Move the negative in front of the fraction.
Step 1.6
Replace with .
Step 1.7
Evaluate at and .
Step 1.7.1
Replace the variable with in the expression.
Step 1.7.2
Replace the variable with in the expression.
Step 1.7.3
Combine the numerators over the common denominator.
Step 1.7.4
Simplify each term.
Step 1.7.4.1
Raise to the power of .
Step 1.7.4.2
Multiply by .
Step 1.7.5
Simplify the expression.
Step 1.7.5.1
Add and .
Step 1.7.5.2
Move the negative in front of the fraction.
Step 2
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Step 2.3.1
Simplify .
Step 2.3.1.1
Rewrite.
Step 2.3.1.2
Simplify terms.
Step 2.3.1.2.1
Apply the distributive property.
Step 2.3.1.2.2
Combine and .
Step 2.3.1.2.3
Multiply by .
Step 2.3.1.3
Move to the left of .
Step 2.3.2
Move all terms not containing to the right side of the equation.
Step 2.3.2.1
Add to both sides of the equation.
Step 2.3.2.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.2.3
Combine and .
Step 2.3.2.4
Combine the numerators over the common denominator.
Step 2.3.2.5
Simplify the numerator.
Step 2.3.2.5.1
Multiply by .
Step 2.3.2.5.2
Add and .
Step 2.3.2.6
Move the negative in front of the fraction.
Step 2.3.3
Write in form.
Step 2.3.3.1
Reorder terms.
Step 2.3.3.2
Remove parentheses.
Step 3