Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Differentiate using the chain rule, which states that is where and .
Step 1.2.1.1
To apply the Chain Rule, set as .
Step 1.2.1.2
The derivative of with respect to is .
Step 1.2.1.3
Replace all occurrences of with .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3
Differentiate using the Power Rule which states that is where .
Step 1.2.4
Multiply by .
Step 1.2.5
Move to the left of .
Step 1.3
Evaluate .
Step 1.3.1
Differentiate using the chain rule, which states that is where and .
Step 1.3.1.1
To apply the Chain Rule, set as .
Step 1.3.1.2
Differentiate using the Power Rule which states that is where .
Step 1.3.1.3
Replace all occurrences of with .
Step 1.3.2
Differentiate using the chain rule, which states that is where and .
Step 1.3.2.1
To apply the Chain Rule, set as .
Step 1.3.2.2
The derivative of with respect to is .
Step 1.3.2.3
Replace all occurrences of with .
Step 1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.4
Differentiate using the Power Rule which states that is where .
Step 1.3.5
Multiply by .
Step 1.3.6
Move to the left of .
Step 1.3.7
Multiply by .
Step 1.4
Reorder terms.
Step 1.5
Evaluate the derivative at .
Step 1.6
Simplify.
Step 1.6.1
Simplify each term.
Step 1.6.1.1
Multiply by .
Step 1.6.1.2
The exact value of is .
Step 1.6.1.3
Multiply by .
Step 1.6.1.4
Multiply by .
Step 1.6.1.5
The exact value of is .
Step 1.6.1.6
Multiply by .
Step 1.6.1.7
Multiply by .
Step 1.6.1.8
The exact value of is .
Step 1.6.1.9
Multiply by .
Step 1.6.2
Add and .
Step 2
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Step 2.3.1
Add and .
Step 2.3.2
Add and .
Step 3