Calculus Examples

Graph 2 natural log of y
2ln(y)2ln(y)
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
Set the argument of the logarithm equal to zero.
y2=0y2=0
Step 1.2
Solve for xx.
Tap for more steps...
Step 1.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=±0y=±0
Step 1.2.2
Simplify ±0±0.
Tap for more steps...
Step 1.2.2.1
Rewrite 00 as 0202.
y=±02y=±02
Step 1.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
y=±0y=±0
Step 1.2.2.3
Plus or minus 00 is 00.
y=0y=0
y=0y=0
y=0y=0
Step 1.3
The vertical asymptote occurs at y=0y=0.
Vertical Asymptote: y=0y=0
Vertical Asymptote: y=0y=0
Step 2
Find the point at x=1x=1.
Tap for more steps...
Step 2.1
Replace the variable xx with 11 in the expression.
f(1)=e1,-e1f(1)=e1,e1
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Simplify.
f(1)=e,-ef(1)=e,e
Step 2.2.2
The final answer is e,-ee,e.
e,-ee,e
e,-ee,e
Step 2.3
Convert e,-ee,e to decimal.
y=e,-ey=e,e
y=e,-ey=e,e
Step 3
Find the point at x=2x=2.
Tap for more steps...
Step 3.1
Replace the variable xx with 22 in the expression.
f(2)=e2,-e2f(2)=e2,e2
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Pull terms out from under the radical, assuming positive real numbers.
f(2)=e,-e2f(2)=e,e2
Step 3.2.2
Pull terms out from under the radical, assuming positive real numbers.
f(2)=e,-ef(2)=e,e
Step 3.2.3
The final answer is e,-ee,e.
e,-ee,e
e,-ee,e
Step 3.3
Convert e,-ee,e to decimal.
y=e,-ey=e,e
y=e,-ey=e,e
Step 4
Find the point at x=3x=3.
Tap for more steps...
Step 4.1
Replace the variable xx with 33 in the expression.
f(3)=e3,-e3f(3)=e3,e3
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Factor out e2e2.
f(3)=e2e,-e3f(3)=e2e,e3
Step 4.2.2
Pull terms out from under the radical.
f(3)=ee,-e3f(3)=ee,e3
Step 4.2.3
Factor out e2e2.
f(3)=ee,-e2ef(3)=ee,e2e
Step 4.2.4
Pull terms out from under the radical.
f(3)=ee,-eef(3)=ee,ee
Step 4.2.5
The final answer is ee,-eeee,ee.
ee,-eeee,ee
ee,-eeee,ee
Step 4.3
Convert ee,-eeee,ee to decimal.
y=ee,-eey=ee,ee
y=ee,-eey=ee,ee
Step 5
Find the point at x=4x=4.
Tap for more steps...
Step 5.1
Replace the variable xx with 44 in the expression.
f(4)=e4,-e4f(4)=e4,e4
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Rewrite e4e4 as (e2)2(e2)2.
f(4)=(e2)2,-e4f(4)=(e2)2,e4
Step 5.2.2
Pull terms out from under the radical, assuming positive real numbers.
f(4)=e2,-e4f(4)=e2,e4
Step 5.2.3
Rewrite e4e4 as (e2)2(e2)2.
f(4)=e2,-(e2)2f(4)=e2,(e2)2
Step 5.2.4
Pull terms out from under the radical, assuming positive real numbers.
f(4)=e2,-e2f(4)=e2,e2
Step 5.2.5
The final answer is e2,-e2e2,e2.
e2,-e2e2,e2
e2,-e2e2,e2
Step 5.3
Convert e2,-e2e2,e2 to decimal.
y=e2,-e2y=e2,e2
y=e2,-e2y=e2,e2
Step 6
Find the point at x=5x=5.
Tap for more steps...
Step 6.1
Replace the variable xx with 55 in the expression.
f(5)=e5,-e5f(5)=e5,e5
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Rewrite e5e5 as (e2)2e(e2)2e.
Tap for more steps...
Step 6.2.1.1
Factor out e4e4.
f(5)=e4e,-e5f(5)=e4e,e5
Step 6.2.1.2
Rewrite e4e4 as (e2)2(e2)2.
f(5)=(e2)2e,-e5f(5)=(e2)2e,e5
f(5)=(e2)2e,-e5f(5)=(e2)2e,e5
Step 6.2.2
Pull terms out from under the radical.
f(5)=e2e,-e5f(5)=e2e,e5
Step 6.2.3
Rewrite e5e5 as (e2)2e(e2)2e.
Tap for more steps...
Step 6.2.3.1
Factor out e4e4.
f(5)=e2e,-e4ef(5)=e2e,e4e
Step 6.2.3.2
Rewrite e4e4 as (e2)2(e2)2.
f(5)=e2e,-(e2)2ef(5)=e2e,(e2)2e
f(5)=e2e,-(e2)2ef(5)=e2e,(e2)2e
Step 6.2.4
Pull terms out from under the radical.
f(5)=e2e,-e2ef(5)=e2e,e2e
Step 6.2.5
The final answer is e2e,-e2ee2e,e2e.
e2e,-e2ee2e,e2e
e2e,-e2ee2e,e2e
Step 6.3
Convert e2e,-e2ee2e,e2e to decimal.
y=e2e,-e2ey=e2e,e2e
y=e2e,-e2ey=e2e,e2e
Step 7
Find the point at x=6x=6.
Tap for more steps...
Step 7.1
Replace the variable xx with 66 in the expression.
f(6)=e6,-e6f(6)=e6,e6
Step 7.2
Simplify the result.
Tap for more steps...
Step 7.2.1
Rewrite e6e6 as (e3)2(e3)2.
f(6)=(e3)2,-e6f(6)=(e3)2,e6
Step 7.2.2
Pull terms out from under the radical, assuming positive real numbers.
f(6)=e3,-e6f(6)=e3,e6
Step 7.2.3
Rewrite e6e6 as (e3)2(e3)2.
f(6)=e3,-(e3)2f(6)=e3,(e3)2
Step 7.2.4
Pull terms out from under the radical, assuming positive real numbers.
f(6)=e3,-e3f(6)=e3,e3
Step 7.2.5
The final answer is e3,-e3e3,e3.
e3,-e3e3,e3
e3,-e3e3,e3
Step 7.3
Convert e3,-e3e3,e3 to decimal.
y=e3,-e3y=e3,e3
y=e3,-e3y=e3,e3
Step 8
Find the point at x=7x=7.
Tap for more steps...
Step 8.1
Replace the variable xx with 77 in the expression.
f(7)=e7,-e7f(7)=e7,e7
Step 8.2
Simplify the result.
Tap for more steps...
Step 8.2.1
Rewrite e7e7 as (e3)2e(e3)2e.
Tap for more steps...
Step 8.2.1.1
Factor out e6e6.
f(7)=e6e,-e7f(7)=e6e,e7
Step 8.2.1.2
Rewrite e6e6 as (e3)2(e3)2.
f(7)=(e3)2e,-e7f(7)=(e3)2e,e7
f(7)=(e3)2e,-e7f(7)=(e3)2e,e7
Step 8.2.2
Pull terms out from under the radical.
f(7)=e3e,-e7f(7)=e3e,e7
Step 8.2.3
Rewrite e7e7 as (e3)2e(e3)2e.
Tap for more steps...
Step 8.2.3.1
Factor out e6e6.
f(7)=e3e,-e6ef(7)=e3e,e6e
Step 8.2.3.2
Rewrite e6e6 as (e3)2(e3)2.
f(7)=e3e,-(e3)2ef(7)=e3e,(e3)2e
f(7)=e3e,-(e3)2ef(7)=e3e,(e3)2e
Step 8.2.4
Pull terms out from under the radical.
f(7)=e3e,-e3ef(7)=e3e,e3e
Step 8.2.5
The final answer is e3e,-e3ee3e,e3e.
e3e,-e3ee3e,e3e
e3e,-e3ee3e,e3e
Step 8.3
Convert e3e,-e3ee3e,e3e to decimal.
y=e3e,-e3ey=e3e,e3e
y=e3e,-e3ey=e3e,e3e
Step 9
Find the point at x=8x=8.
Tap for more steps...
Step 9.1
Replace the variable xx with 88 in the expression.
f(8)=e8,-e8f(8)=e8,e8
Step 9.2
Simplify the result.
Tap for more steps...
Step 9.2.1
Rewrite e8e8 as (e4)2(e4)2.
f(8)=(e4)2,-e8f(8)=(e4)2,e8
Step 9.2.2
Pull terms out from under the radical, assuming positive real numbers.
f(8)=e4,-e8f(8)=e4,e8
Step 9.2.3
Rewrite e8e8 as (e4)2(e4)2.
f(8)=e4,-(e4)2f(8)=e4,(e4)2
Step 9.2.4
Pull terms out from under the radical, assuming positive real numbers.
f(8)=e4,-e4f(8)=e4,e4
Step 9.2.5
The final answer is e4,-e4e4,e4.
e4,-e4e4,e4
e4,-e4e4,e4
Step 9.3
Convert e4,-e4e4,e4 to decimal.
y=e4,-e4y=e4,e4
y=e4,-e4y=e4,e4
Step 10
Find the point at x=9x=9.
Tap for more steps...
Step 10.1
Replace the variable xx with 99 in the expression.
f(9)=e9,-e9f(9)=e9,e9
Step 10.2
Simplify the result.
Tap for more steps...
Step 10.2.1
Rewrite e9e9 as (e4)2e(e4)2e.
Tap for more steps...
Step 10.2.1.1
Factor out e8e8.
f(9)=e8e,-e9f(9)=e8e,e9
Step 10.2.1.2
Rewrite e8e8 as (e4)2(e4)2.
f(9)=(e4)2e,-e9f(9)=(e4)2e,e9
f(9)=(e4)2e,-e9f(9)=(e4)2e,e9
Step 10.2.2
Pull terms out from under the radical.
f(9)=e4e,-e9f(9)=e4e,e9
Step 10.2.3
Rewrite e9e9 as (e4)2e(e4)2e.
Tap for more steps...
Step 10.2.3.1
Factor out e8e8.
f(9)=e4e,-e8ef(9)=e4e,e8e
Step 10.2.3.2
Rewrite e8e8 as (e4)2(e4)2.
f(9)=e4e,-(e4)2ef(9)=e4e,(e4)2e
f(9)=e4e,-(e4)2ef(9)=e4e,(e4)2e
Step 10.2.4
Pull terms out from under the radical.
f(9)=e4e,-e4ef(9)=e4e,e4e
Step 10.2.5
The final answer is e4e,-e4ee4e,e4e.
e4e,-e4ee4e,e4e
e4e,-e4e
Step 10.3
Convert e4e,-e4e to decimal.
y=e4e,-e4e
y=e4e,-e4e
Step 11
Find the point at x=10.
Tap for more steps...
Step 11.1
Replace the variable x with 10 in the expression.
f(10)=e10,-e10
Step 11.2
Simplify the result.
Tap for more steps...
Step 11.2.1
Rewrite e10 as (e5)2.
f(10)=(e5)2,-e10
Step 11.2.2
Pull terms out from under the radical, assuming positive real numbers.
f(10)=e5,-e10
Step 11.2.3
Rewrite e10 as (e5)2.
f(10)=e5,-(e5)2
Step 11.2.4
Pull terms out from under the radical, assuming positive real numbers.
f(10)=e5,-e5
Step 11.2.5
The final answer is e5,-e5.
e5,-e5
e5,-e5
Step 11.3
Convert e5,-e5 to decimal.
y=e5,-e5
y=e5,-e5
Step 12
Find the point at x=1.
Tap for more steps...
Step 12.1
Replace the variable x with 1 in the expression.
f(1)=e1,-e1
Step 12.2
Simplify the result.
Tap for more steps...
Step 12.2.1
Simplify.
f(1)=e,-e
Step 12.2.2
The final answer is e,-e.
e,-e
e,-e
Step 12.3
Convert e,-e to decimal.
y=e,-e
y=e,-e
Step 13
Find the point at x=2.
Tap for more steps...
Step 13.1
Replace the variable x with 2 in the expression.
f(2)=e2,-e2
Step 13.2
Simplify the result.
Tap for more steps...
Step 13.2.1
Pull terms out from under the radical, assuming positive real numbers.
f(2)=e,-e2
Step 13.2.2
Pull terms out from under the radical, assuming positive real numbers.
f(2)=e,-e
Step 13.2.3
The final answer is e,-e.
e,-e
e,-e
Step 13.3
Convert e,-e to decimal.
y=e,-e
y=e,-e
Step 14
Find the point at x=3.
Tap for more steps...
Step 14.1
Replace the variable x with 3 in the expression.
f(3)=e3,-e3
Step 14.2
Simplify the result.
Tap for more steps...
Step 14.2.1
Factor out e2.
f(3)=e2e,-e3
Step 14.2.2
Pull terms out from under the radical.
f(3)=ee,-e3
Step 14.2.3
Factor out e2.
f(3)=ee,-e2e
Step 14.2.4
Pull terms out from under the radical.
f(3)=ee,-ee
Step 14.2.5
The final answer is ee,-ee.
ee,-ee
ee,-ee
Step 14.3
Convert ee,-ee to decimal.
y=ee,-ee
y=ee,-ee
Step 15
Find the point at x=4.
Tap for more steps...
Step 15.1
Replace the variable x with 4 in the expression.
f(4)=e4,-e4
Step 15.2
Simplify the result.
Tap for more steps...
Step 15.2.1
Rewrite e4 as (e2)2.
f(4)=(e2)2,-e4
Step 15.2.2
Pull terms out from under the radical, assuming positive real numbers.
f(4)=e2,-e4
Step 15.2.3
Rewrite e4 as (e2)2.
f(4)=e2,-(e2)2
Step 15.2.4
Pull terms out from under the radical, assuming positive real numbers.
f(4)=e2,-e2
Step 15.2.5
The final answer is e2,-e2.
e2,-e2
e2,-e2
Step 15.3
Convert e2,-e2 to decimal.
y=e2,-e2
y=e2,-e2
Step 16
Find the point at x=5.
Tap for more steps...
Step 16.1
Replace the variable x with 5 in the expression.
f(5)=e5,-e5
Step 16.2
Simplify the result.
Tap for more steps...
Step 16.2.1
Rewrite e5 as (e2)2e.
Tap for more steps...
Step 16.2.1.1
Factor out e4.
f(5)=e4e,-e5
Step 16.2.1.2
Rewrite e4 as (e2)2.
f(5)=(e2)2e,-e5
f(5)=(e2)2e,-e5
Step 16.2.2
Pull terms out from under the radical.
f(5)=e2e,-e5
Step 16.2.3
Rewrite e5 as (e2)2e.
Tap for more steps...
Step 16.2.3.1
Factor out e4.
f(5)=e2e,-e4e
Step 16.2.3.2
Rewrite e4 as (e2)2.
f(5)=e2e,-(e2)2e
f(5)=e2e,-(e2)2e
Step 16.2.4
Pull terms out from under the radical.
f(5)=e2e,-e2e
Step 16.2.5
The final answer is e2e,-e2e.
e2e,-e2e
e2e,-e2e
Step 16.3
Convert e2e,-e2e to decimal.
y=e2e,-e2e
y=e2e,-e2e
Step 17
Find the point at x=6.
Tap for more steps...
Step 17.1
Replace the variable x with 6 in the expression.
f(6)=e6,-e6
Step 17.2
Simplify the result.
Tap for more steps...
Step 17.2.1
Rewrite e6 as (e3)2.
f(6)=(e3)2,-e6
Step 17.2.2
Pull terms out from under the radical, assuming positive real numbers.
f(6)=e3,-e6
Step 17.2.3
Rewrite e6 as (e3)2.
f(6)=e3,-(e3)2
Step 17.2.4
Pull terms out from under the radical, assuming positive real numbers.
f(6)=e3,-e3
Step 17.2.5
The final answer is e3,-e3.
e3,-e3
e3,-e3
Step 17.3
Convert e3,-e3 to decimal.
y=e3,-e3
y=e3,-e3
Step 18
Find the point at x=7.
Tap for more steps...
Step 18.1
Replace the variable x with 7 in the expression.
f(7)=e7,-e7
Step 18.2
Simplify the result.
Tap for more steps...
Step 18.2.1
Rewrite e7 as (e3)2e.
Tap for more steps...
Step 18.2.1.1
Factor out e6.
f(7)=e6e,-e7
Step 18.2.1.2
Rewrite e6 as (e3)2.
f(7)=(e3)2e,-e7
f(7)=(e3)2e,-e7
Step 18.2.2
Pull terms out from under the radical.
f(7)=e3e,-e7
Step 18.2.3
Rewrite e7 as (e3)2e.
Tap for more steps...
Step 18.2.3.1
Factor out e6.
f(7)=e3e,-e6e
Step 18.2.3.2
Rewrite e6 as (e3)2.
f(7)=e3e,-(e3)2e
f(7)=e3e,-(e3)2e
Step 18.2.4
Pull terms out from under the radical.
f(7)=e3e,-e3e
Step 18.2.5
The final answer is e3e,-e3e.
e3e,-e3e
e3e,-e3e
Step 18.3
Convert e3e,-e3e to decimal.
y=e3e,-e3e
y=e3e,-e3e
Step 19
Find the point at x=8.
Tap for more steps...
Step 19.1
Replace the variable x with 8 in the expression.
f(8)=e8,-e8
Step 19.2
Simplify the result.
Tap for more steps...
Step 19.2.1
Rewrite e8 as (e4)2.
f(8)=(e4)2,-e8
Step 19.2.2
Pull terms out from under the radical, assuming positive real numbers.
f(8)=e4,-e8
Step 19.2.3
Rewrite e8 as (e4)2.
f(8)=e4,-(e4)2
Step 19.2.4
Pull terms out from under the radical, assuming positive real numbers.
f(8)=e4,-e4
Step 19.2.5
The final answer is e4,-e4.
e4,-e4
e4,-e4
Step 19.3
Convert e4,-e4 to decimal.
y=e4,-e4
y=e4,-e4
Step 20
Find the point at x=9.
Tap for more steps...
Step 20.1
Replace the variable x with 9 in the expression.
f(9)=e9,-e9
Step 20.2
Simplify the result.
Tap for more steps...
Step 20.2.1
Rewrite e9 as (e4)2e.
Tap for more steps...
Step 20.2.1.1
Factor out e8.
f(9)=e8e,-e9
Step 20.2.1.2
Rewrite e8 as (e4)2.
f(9)=(e4)2e,-e9
f(9)=(e4)2e,-e9
Step 20.2.2
Pull terms out from under the radical.
f(9)=e4e,-e9
Step 20.2.3
Rewrite e9 as (e4)2e.
Tap for more steps...
Step 20.2.3.1
Factor out e8.
f(9)=e4e,-e8e
Step 20.2.3.2
Rewrite e8 as (e4)2.
f(9)=e4e,-(e4)2e
f(9)=e4e,-(e4)2e
Step 20.2.4
Pull terms out from under the radical.
f(9)=e4e,-e4e
Step 20.2.5
The final answer is e4e,-e4e.
e4e,-e4e
e4e,-e4e
Step 20.3
Convert e4e,-e4e to decimal.
y=e4e,-e4e
y=e4e,-e4e
Step 21
Find the point at x=10.
Tap for more steps...
Step 21.1
Replace the variable x with 10 in the expression.
f(10)=e10,-e10
Step 21.2
Simplify the result.
Tap for more steps...
Step 21.2.1
Rewrite e10 as (e5)2.
f(10)=(e5)2,-e10
Step 21.2.2
Pull terms out from under the radical, assuming positive real numbers.
f(10)=e5,-e10
Step 21.2.3
Rewrite e10 as (e5)2.
f(10)=e5,-(e5)2
Step 21.2.4
Pull terms out from under the radical, assuming positive real numbers.
f(10)=e5,-e5
Step 21.2.5
The final answer is e5,-e5.
e5,-e5
e5,-e5
Step 21.3
Convert e5,-e5 to decimal.
y=e5,-e5
y=e5,-e5
Step 22
The log function can be graphed using the vertical asymptote at y=0 and the points (1,1.64872127),(1,-1.64872127),(2,2.71828182),(2,-2.71828182),(3,4.48168907),(3,-4.48168907),(4,7.38905609),(4,-7.38905609),(5,12.18249396),(5,-12.18249396),(6,20.08553692),(6,-20.08553692),(7,33.11545195),(7,-33.11545195),(8,54.59815003),(8,-54.59815003),(9,90.0171313),(9,-90.0171313),(10,148.4131591),(10,-148.4131591),(1,e,-e),(2,e,-e),(3,ee,-ee),(4,e2,-e2),(5,e2e,-e2e),(6,e3,-e3),(7,e3e,-e3e),(8,e4,-e4),(9,e4e,-e4e),(10,e5,-e5).
Vertical Asymptote: y=0

Step 23
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]