Enter a problem...
Calculus Examples
2ln(sec(x))2ln(sec(x))
Step 1
Step 1.1
For any y=sec(x), vertical asymptotes occur at x=π2+nπ, where n is an integer. Use the basic period for y=sec(x), (-π2,3π2), to find the vertical asymptotes for y=ln(sec2(x)). Set the inside of the secant function, bx+c, for y=asec(bx+c)+d equal to -π2 to find where the vertical asymptote occurs for y=ln(sec2(x)).
sec2(x)=-π2
Step 1.2
Solve for x.
Step 1.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
sec(x)=±√-π2
Step 1.2.2
Simplify ±√-π2.
Step 1.2.2.1
Rewrite -1 as i2.
sec(x)=±√i2π2
Step 1.2.2.2
Pull terms out from under the radical.
sec(x)=±i√π2
Step 1.2.2.3
Rewrite √π2 as √π√2.
sec(x)=±i√π√2
Step 1.2.2.4
Multiply √π√2 by √2√2.
sec(x)=±i(√π√2⋅√2√2)
Step 1.2.2.5
Combine and simplify the denominator.
Step 1.2.2.5.1
Multiply √π√2 by √2√2.
sec(x)=±i√π√2√2√2
Step 1.2.2.5.2
Raise √2 to the power of 1.
sec(x)=±i√π√2√21√2
Step 1.2.2.5.3
Raise √2 to the power of 1.
sec(x)=±i√π√2√21√21
Step 1.2.2.5.4
Use the power rule aman=am+n to combine exponents.
sec(x)=±i√π√2√21+1
Step 1.2.2.5.5
Add 1 and 1.
sec(x)=±i√π√2√22
Step 1.2.2.5.6
Rewrite √22 as 2.
Step 1.2.2.5.6.1
Use n√ax=axn to rewrite √2 as 212.
sec(x)=±i√π√2(212)2
Step 1.2.2.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sec(x)=±i√π√2212⋅2
Step 1.2.2.5.6.3
Combine 12 and 2.
sec(x)=±i√π√2222
Step 1.2.2.5.6.4
Cancel the common factor of 2.
Step 1.2.2.5.6.4.1
Cancel the common factor.
sec(x)=±i√π√2222
Step 1.2.2.5.6.4.2
Rewrite the expression.
sec(x)=±i√π√221
sec(x)=±i√π√221
Step 1.2.2.5.6.5
Evaluate the exponent.
sec(x)=±i√π√22
sec(x)=±i√π√22
sec(x)=±i√π√22
Step 1.2.2.6
Combine using the product rule for radicals.
sec(x)=±i√π⋅22
Step 1.2.2.7
Combine i and √π⋅22.
sec(x)=±i√π⋅22
Step 1.2.2.8
Move 2 to the left of π.
sec(x)=±i√2π2
sec(x)=±i√2π2
Step 1.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.3.1
First, use the positive value of the ± to find the first solution.
sec(x)=i√2π2
Step 1.2.3.2
Next, use the negative value of the ± to find the second solution.
sec(x)=-i√2π2
Step 1.2.3.3
The complete solution is the result of both the positive and negative portions of the solution.
sec(x)=i√2π2,-i√2π2
sec(x)=i√2π2,-i√2π2
Step 1.2.4
Set up each of the solutions to solve for x.
sec(x)=i√2π2
sec(x)=-i√2π2
Step 1.2.5
Solve for x in sec(x)=i√2π2.
Step 1.2.5.1
Take the inverse secant of both sides of the equation to extract x from inside the secant.
x=arcsec(i√2π2)
Step 1.2.5.2
The inverse secant of arcsec(i√2π2) is undefined.
Undefined
Undefined
Step 1.2.6
Solve for x in sec(x)=-i√2π2.
Step 1.2.6.1
Take the inverse secant of both sides of the equation to extract x from inside the secant.
x=arcsec(-i√2π2)
Step 1.2.6.2
The inverse secant of arcsec(-i√2π2) is undefined.
Undefined
Undefined
Step 1.2.7
List all of the solutions.
No solution
No solution
Step 1.3
Set the inside of the secant function sec2(x) equal to 3π2.
sec2(x)=3π2
Step 1.4
Solve for x.
Step 1.4.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
sec(x)=±√3π2
Step 1.4.2
Simplify ±√3π2.
Step 1.4.2.1
Rewrite √3π2 as √3π√2.
sec(x)=±√3π√2
Step 1.4.2.2
Multiply √3π√2 by √2√2.
sec(x)=±√3π√2⋅√2√2
Step 1.4.2.3
Combine and simplify the denominator.
Step 1.4.2.3.1
Multiply √3π√2 by √2√2.
sec(x)=±√3π√2√2√2
Step 1.4.2.3.2
Raise √2 to the power of 1.
sec(x)=±√3π√2√21√2
Step 1.4.2.3.3
Raise √2 to the power of 1.
sec(x)=±√3π√2√21√21
Step 1.4.2.3.4
Use the power rule aman=am+n to combine exponents.
sec(x)=±√3π√2√21+1
Step 1.4.2.3.5
Add 1 and 1.
sec(x)=±√3π√2√22
Step 1.4.2.3.6
Rewrite √22 as 2.
Step 1.4.2.3.6.1
Use n√ax=axn to rewrite √2 as 212.
sec(x)=±√3π√2(212)2
Step 1.4.2.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sec(x)=±√3π√2212⋅2
Step 1.4.2.3.6.3
Combine 12 and 2.
sec(x)=±√3π√2222
Step 1.4.2.3.6.4
Cancel the common factor of 2.
Step 1.4.2.3.6.4.1
Cancel the common factor.
sec(x)=±√3π√2222
Step 1.4.2.3.6.4.2
Rewrite the expression.
sec(x)=±√3π√221
sec(x)=±√3π√221
Step 1.4.2.3.6.5
Evaluate the exponent.
sec(x)=±√3π√22
sec(x)=±√3π√22
sec(x)=±√3π√22
Step 1.4.2.4
Simplify the numerator.
Step 1.4.2.4.1
Combine using the product rule for radicals.
sec(x)=±√3π⋅22
Step 1.4.2.4.2
Multiply 2 by 3.
sec(x)=±√6π2
sec(x)=±√6π2
sec(x)=±√6π2
Step 1.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.4.3.1
First, use the positive value of the ± to find the first solution.
sec(x)=√6π2
Step 1.4.3.2
Next, use the negative value of the ± to find the second solution.
sec(x)=-√6π2
Step 1.4.3.3
The complete solution is the result of both the positive and negative portions of the solution.
sec(x)=√6π2,-√6π2
sec(x)=√6π2,-√6π2
Step 1.4.4
Set up each of the solutions to solve for x.
sec(x)=√6π2
sec(x)=-√6π2
Step 1.4.5
Solve for x in sec(x)=√6π2.
Step 1.4.5.1
Take the inverse secant of both sides of the equation to extract x from inside the secant.
x=arcsec(√6π2)
Step 1.4.5.2
Simplify the right side.
Step 1.4.5.2.1
Evaluate arcsec(√6π2).
x=1.09205895
x=1.09205895
Step 1.4.5.3
The secant function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from 2π to find the solution in the fourth quadrant.
x=2(3.14159265)-1.09205895
Step 1.4.5.4
Solve for x.
Step 1.4.5.4.1
Remove parentheses.
x=2(3.14159265)-1.09205895
Step 1.4.5.4.2
Simplify 2(3.14159265)-1.09205895.
Step 1.4.5.4.2.1
Multiply 2 by 3.14159265.
x=6.2831853-1.09205895
Step 1.4.5.4.2.2
Subtract 1.09205895 from 6.2831853.
x=5.19112635
x=5.19112635
x=5.19112635
Step 1.4.5.5
Find the period of sec(x).
Step 1.4.5.5.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 1.4.5.5.2
Replace b with 1 in the formula for period.
2π|1|
Step 1.4.5.5.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
2π1
Step 1.4.5.5.4
Divide 2π by 1.
2π
2π
Step 1.4.5.6
The period of the sec(x) function is 2π so values will repeat every 2π radians in both directions.
x=1.09205895+2πn,5.19112635+2πn, for any integer n
x=1.09205895+2πn,5.19112635+2πn, for any integer n
Step 1.4.6
Solve for x in sec(x)=-√6π2.
Step 1.4.6.1
Take the inverse secant of both sides of the equation to extract x from inside the secant.
x=arcsec(-√6π2)
Step 1.4.6.2
Simplify the right side.
Step 1.4.6.2.1
Evaluate arcsec(-√6π2).
x=2.0495337
x=2.0495337
Step 1.4.6.3
The secant function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from 2π to find the solution in the third quadrant.
x=2(3.14159265)-2.0495337
Step 1.4.6.4
Solve for x.
Step 1.4.6.4.1
Remove parentheses.
x=2(3.14159265)-2.0495337
Step 1.4.6.4.2
Simplify 2(3.14159265)-2.0495337.
Step 1.4.6.4.2.1
Multiply 2 by 3.14159265.
x=6.2831853-2.0495337
Step 1.4.6.4.2.2
Subtract 2.0495337 from 6.2831853.
x=4.2336516
x=4.2336516
x=4.2336516
Step 1.4.6.5
Find the period of sec(x).
Step 1.4.6.5.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 1.4.6.5.2
Replace b with 1 in the formula for period.
2π|1|
Step 1.4.6.5.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
2π1
Step 1.4.6.5.4
Divide 2π by 1.
2π
2π
Step 1.4.6.6
The period of the sec(x) function is 2π so values will repeat every 2π radians in both directions.
x=2.0495337+2πn,4.2336516+2πn, for any integer n
x=2.0495337+2πn,4.2336516+2πn, for any integer n
Step 1.4.7
List all of the solutions.
x=1.09205895+2πn,5.19112635+2πn,2.0495337+2πn,4.2336516+2πn, for any integer n
Step 1.4.8
Consolidate the solutions.
Step 1.4.8.1
Consolidate 1.09205895+2πn and 4.2336516+2πn to 1.09205895+πn.
x=1.09205895+πn,5.19112635+2πn,2.0495337+2πn, for any integer n
Step 1.4.8.2
Consolidate 5.19112635+2πn and 2.0495337+2πn to 2.0495337+πn.
x=1.09205895+πn,2.0495337+πn, for any integer n
x=1.09205895+πn,2.0495337+πn, for any integer n
x=1.09205895+πn,2.0495337+πn, for any integer n
Step 1.5
The basic period for y=ln(sec2(x)) will occur at (,1.09205895+πn,2.0495337+πn), where and 1.09205895+πn,2.0495337+πn are vertical asymptotes.
(,1.09205895+πn,2.0495337+πn)
Step 1.6
Find the period 2π|b| to find where the vertical asymptotes exist. Vertical asymptotes occur every half period.
Step 1.6.1
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
2π1
Step 1.6.2
Divide 2π by 1.
2π
2π
Step 1.7
The vertical asymptotes for y=ln(sec2(x)) occur at , 1.09205895+πn,2.0495337+πn, and every πn, where n is an integer. This is half of the period.
πn
Step 1.8
There are only vertical asymptotes for secant and cosecant functions.
Vertical Asymptotes: x=πn for any integer n
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: x=πn for any integer n
No Horizontal Asymptotes
No Oblique Asymptotes
Step 2
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=2ln(sec(1))
Step 2.2
Simplify the result.
Step 2.2.1
Evaluate sec(1).
f(1)=2ln(1.85081571)
Step 2.2.2
Simplify 2ln(1.85081571) by moving 2 inside the logarithm.
f(1)=ln(1.850815712)
Step 2.2.3
Raise 1.85081571 to the power of 2.
f(1)=ln(3.42551882)
Step 2.2.4
The final answer is ln(3.42551882).
ln(3.42551882)
ln(3.42551882)
ln(3.42551882)
Step 3
Step 3.1
Replace the variable x with 5 in the expression.
f(5)=2ln(sec(5))
Step 3.2
Simplify the result.
Step 3.2.1
Evaluate sec(5).
f(5)=2ln(3.52532008)
Step 3.2.2
Simplify 2ln(3.52532008) by moving 2 inside the logarithm.
f(5)=ln(3.525320082)
Step 3.2.3
Raise 3.52532008 to the power of 2.
f(5)=ln(12.4278817)
Step 3.2.4
The final answer is ln(12.4278817).
ln(12.4278817)
ln(12.4278817)
ln(12.4278817)
Step 4
Step 4.1
Replace the variable x with 6 in the expression.
f(6)=2ln(sec(6))
Step 4.2
Simplify the result.
Step 4.2.1
Evaluate sec(6).
f(6)=2ln(1.04148192)
Step 4.2.2
Simplify 2ln(1.04148192) by moving 2 inside the logarithm.
f(6)=ln(1.041481922)
Step 4.2.3
Raise 1.04148192 to the power of 2.
f(6)=ln(1.0846846)
Step 4.2.4
The final answer is ln(1.0846846).
ln(1.0846846)
ln(1.0846846)
ln(1.0846846)
Step 5
The log function can be graphed using the vertical asymptote at x=πn(for)(any)(integer)n and the points (1,1.23125294),(5,2.51994247),(6,0.08128925).
Vertical Asymptote: x=πn(for)(any)(integer)n
xy11.23152.5260.081
Step 6