Calculus Examples

Graph 2 natural log of sec(x)
2ln(sec(x))2ln(sec(x))
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
For any y=sec(x), vertical asymptotes occur at x=π2+nπ, where n is an integer. Use the basic period for y=sec(x), (-π2,3π2), to find the vertical asymptotes for y=ln(sec2(x)). Set the inside of the secant function, bx+c, for y=asec(bx+c)+d equal to -π2 to find where the vertical asymptote occurs for y=ln(sec2(x)).
sec2(x)=-π2
Step 1.2
Solve for x.
Tap for more steps...
Step 1.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
sec(x)=±-π2
Step 1.2.2
Simplify ±-π2.
Tap for more steps...
Step 1.2.2.1
Rewrite -1 as i2.
sec(x)=±i2π2
Step 1.2.2.2
Pull terms out from under the radical.
sec(x)=±iπ2
Step 1.2.2.3
Rewrite π2 as π2.
sec(x)=±iπ2
Step 1.2.2.4
Multiply π2 by 22.
sec(x)=±i(π222)
Step 1.2.2.5
Combine and simplify the denominator.
Tap for more steps...
Step 1.2.2.5.1
Multiply π2 by 22.
sec(x)=±iπ222
Step 1.2.2.5.2
Raise 2 to the power of 1.
sec(x)=±iπ2212
Step 1.2.2.5.3
Raise 2 to the power of 1.
sec(x)=±iπ22121
Step 1.2.2.5.4
Use the power rule aman=am+n to combine exponents.
sec(x)=±iπ221+1
Step 1.2.2.5.5
Add 1 and 1.
sec(x)=±iπ222
Step 1.2.2.5.6
Rewrite 22 as 2.
Tap for more steps...
Step 1.2.2.5.6.1
Use nax=axn to rewrite 2 as 212.
sec(x)=±iπ2(212)2
Step 1.2.2.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sec(x)=±iπ22122
Step 1.2.2.5.6.3
Combine 12 and 2.
sec(x)=±iπ2222
Step 1.2.2.5.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.2.5.6.4.1
Cancel the common factor.
sec(x)=±iπ2222
Step 1.2.2.5.6.4.2
Rewrite the expression.
sec(x)=±iπ221
sec(x)=±iπ221
Step 1.2.2.5.6.5
Evaluate the exponent.
sec(x)=±iπ22
sec(x)=±iπ22
sec(x)=±iπ22
Step 1.2.2.6
Combine using the product rule for radicals.
sec(x)=±iπ22
Step 1.2.2.7
Combine i and π22.
sec(x)=±iπ22
Step 1.2.2.8
Move 2 to the left of π.
sec(x)=±i2π2
sec(x)=±i2π2
Step 1.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.2.3.1
First, use the positive value of the ± to find the first solution.
sec(x)=i2π2
Step 1.2.3.2
Next, use the negative value of the ± to find the second solution.
sec(x)=-i2π2
Step 1.2.3.3
The complete solution is the result of both the positive and negative portions of the solution.
sec(x)=i2π2,-i2π2
sec(x)=i2π2,-i2π2
Step 1.2.4
Set up each of the solutions to solve for x.
sec(x)=i2π2
sec(x)=-i2π2
Step 1.2.5
Solve for x in sec(x)=i2π2.
Tap for more steps...
Step 1.2.5.1
Take the inverse secant of both sides of the equation to extract x from inside the secant.
x=arcsec(i2π2)
Step 1.2.5.2
The inverse secant of arcsec(i2π2) is undefined.
Undefined
Undefined
Step 1.2.6
Solve for x in sec(x)=-i2π2.
Tap for more steps...
Step 1.2.6.1
Take the inverse secant of both sides of the equation to extract x from inside the secant.
x=arcsec(-i2π2)
Step 1.2.6.2
The inverse secant of arcsec(-i2π2) is undefined.
Undefined
Undefined
Step 1.2.7
List all of the solutions.
No solution
No solution
Step 1.3
Set the inside of the secant function sec2(x) equal to 3π2.
sec2(x)=3π2
Step 1.4
Solve for x.
Tap for more steps...
Step 1.4.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
sec(x)=±3π2
Step 1.4.2
Simplify ±3π2.
Tap for more steps...
Step 1.4.2.1
Rewrite 3π2 as 3π2.
sec(x)=±3π2
Step 1.4.2.2
Multiply 3π2 by 22.
sec(x)=±3π222
Step 1.4.2.3
Combine and simplify the denominator.
Tap for more steps...
Step 1.4.2.3.1
Multiply 3π2 by 22.
sec(x)=±3π222
Step 1.4.2.3.2
Raise 2 to the power of 1.
sec(x)=±3π2212
Step 1.4.2.3.3
Raise 2 to the power of 1.
sec(x)=±3π22121
Step 1.4.2.3.4
Use the power rule aman=am+n to combine exponents.
sec(x)=±3π221+1
Step 1.4.2.3.5
Add 1 and 1.
sec(x)=±3π222
Step 1.4.2.3.6
Rewrite 22 as 2.
Tap for more steps...
Step 1.4.2.3.6.1
Use nax=axn to rewrite 2 as 212.
sec(x)=±3π2(212)2
Step 1.4.2.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sec(x)=±3π22122
Step 1.4.2.3.6.3
Combine 12 and 2.
sec(x)=±3π2222
Step 1.4.2.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.4.2.3.6.4.1
Cancel the common factor.
sec(x)=±3π2222
Step 1.4.2.3.6.4.2
Rewrite the expression.
sec(x)=±3π221
sec(x)=±3π221
Step 1.4.2.3.6.5
Evaluate the exponent.
sec(x)=±3π22
sec(x)=±3π22
sec(x)=±3π22
Step 1.4.2.4
Simplify the numerator.
Tap for more steps...
Step 1.4.2.4.1
Combine using the product rule for radicals.
sec(x)=±3π22
Step 1.4.2.4.2
Multiply 2 by 3.
sec(x)=±6π2
sec(x)=±6π2
sec(x)=±6π2
Step 1.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.4.3.1
First, use the positive value of the ± to find the first solution.
sec(x)=6π2
Step 1.4.3.2
Next, use the negative value of the ± to find the second solution.
sec(x)=-6π2
Step 1.4.3.3
The complete solution is the result of both the positive and negative portions of the solution.
sec(x)=6π2,-6π2
sec(x)=6π2,-6π2
Step 1.4.4
Set up each of the solutions to solve for x.
sec(x)=6π2
sec(x)=-6π2
Step 1.4.5
Solve for x in sec(x)=6π2.
Tap for more steps...
Step 1.4.5.1
Take the inverse secant of both sides of the equation to extract x from inside the secant.
x=arcsec(6π2)
Step 1.4.5.2
Simplify the right side.
Tap for more steps...
Step 1.4.5.2.1
Evaluate arcsec(6π2).
x=1.09205895
x=1.09205895
Step 1.4.5.3
The secant function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from 2π to find the solution in the fourth quadrant.
x=2(3.14159265)-1.09205895
Step 1.4.5.4
Solve for x.
Tap for more steps...
Step 1.4.5.4.1
Remove parentheses.
x=2(3.14159265)-1.09205895
Step 1.4.5.4.2
Simplify 2(3.14159265)-1.09205895.
Tap for more steps...
Step 1.4.5.4.2.1
Multiply 2 by 3.14159265.
x=6.2831853-1.09205895
Step 1.4.5.4.2.2
Subtract 1.09205895 from 6.2831853.
x=5.19112635
x=5.19112635
x=5.19112635
Step 1.4.5.5
Find the period of sec(x).
Tap for more steps...
Step 1.4.5.5.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 1.4.5.5.2
Replace b with 1 in the formula for period.
2π|1|
Step 1.4.5.5.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
2π1
Step 1.4.5.5.4
Divide 2π by 1.
2π
2π
Step 1.4.5.6
The period of the sec(x) function is 2π so values will repeat every 2π radians in both directions.
x=1.09205895+2πn,5.19112635+2πn, for any integer n
x=1.09205895+2πn,5.19112635+2πn, for any integer n
Step 1.4.6
Solve for x in sec(x)=-6π2.
Tap for more steps...
Step 1.4.6.1
Take the inverse secant of both sides of the equation to extract x from inside the secant.
x=arcsec(-6π2)
Step 1.4.6.2
Simplify the right side.
Tap for more steps...
Step 1.4.6.2.1
Evaluate arcsec(-6π2).
x=2.0495337
x=2.0495337
Step 1.4.6.3
The secant function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from 2π to find the solution in the third quadrant.
x=2(3.14159265)-2.0495337
Step 1.4.6.4
Solve for x.
Tap for more steps...
Step 1.4.6.4.1
Remove parentheses.
x=2(3.14159265)-2.0495337
Step 1.4.6.4.2
Simplify 2(3.14159265)-2.0495337.
Tap for more steps...
Step 1.4.6.4.2.1
Multiply 2 by 3.14159265.
x=6.2831853-2.0495337
Step 1.4.6.4.2.2
Subtract 2.0495337 from 6.2831853.
x=4.2336516
x=4.2336516
x=4.2336516
Step 1.4.6.5
Find the period of sec(x).
Tap for more steps...
Step 1.4.6.5.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 1.4.6.5.2
Replace b with 1 in the formula for period.
2π|1|
Step 1.4.6.5.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
2π1
Step 1.4.6.5.4
Divide 2π by 1.
2π
2π
Step 1.4.6.6
The period of the sec(x) function is 2π so values will repeat every 2π radians in both directions.
x=2.0495337+2πn,4.2336516+2πn, for any integer n
x=2.0495337+2πn,4.2336516+2πn, for any integer n
Step 1.4.7
List all of the solutions.
x=1.09205895+2πn,5.19112635+2πn,2.0495337+2πn,4.2336516+2πn, for any integer n
Step 1.4.8
Consolidate the solutions.
Tap for more steps...
Step 1.4.8.1
Consolidate 1.09205895+2πn and 4.2336516+2πn to 1.09205895+πn.
x=1.09205895+πn,5.19112635+2πn,2.0495337+2πn, for any integer n
Step 1.4.8.2
Consolidate 5.19112635+2πn and 2.0495337+2πn to 2.0495337+πn.
x=1.09205895+πn,2.0495337+πn, for any integer n
x=1.09205895+πn,2.0495337+πn, for any integer n
x=1.09205895+πn,2.0495337+πn, for any integer n
Step 1.5
The basic period for y=ln(sec2(x)) will occur at (,1.09205895+πn,2.0495337+πn), where and 1.09205895+πn,2.0495337+πn are vertical asymptotes.
(,1.09205895+πn,2.0495337+πn)
Step 1.6
Find the period 2π|b| to find where the vertical asymptotes exist. Vertical asymptotes occur every half period.
Tap for more steps...
Step 1.6.1
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
2π1
Step 1.6.2
Divide 2π by 1.
2π
2π
Step 1.7
The vertical asymptotes for y=ln(sec2(x)) occur at , 1.09205895+πn,2.0495337+πn, and every πn, where n is an integer. This is half of the period.
πn
Step 1.8
There are only vertical asymptotes for secant and cosecant functions.
Vertical Asymptotes: x=πn for any integer n
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: x=πn for any integer n
No Horizontal Asymptotes
No Oblique Asymptotes
Step 2
Find the point at x=1.
Tap for more steps...
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=2ln(sec(1))
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Evaluate sec(1).
f(1)=2ln(1.85081571)
Step 2.2.2
Simplify 2ln(1.85081571) by moving 2 inside the logarithm.
f(1)=ln(1.850815712)
Step 2.2.3
Raise 1.85081571 to the power of 2.
f(1)=ln(3.42551882)
Step 2.2.4
The final answer is ln(3.42551882).
ln(3.42551882)
ln(3.42551882)
ln(3.42551882)
Step 3
Find the point at x=5.
Tap for more steps...
Step 3.1
Replace the variable x with 5 in the expression.
f(5)=2ln(sec(5))
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Evaluate sec(5).
f(5)=2ln(3.52532008)
Step 3.2.2
Simplify 2ln(3.52532008) by moving 2 inside the logarithm.
f(5)=ln(3.525320082)
Step 3.2.3
Raise 3.52532008 to the power of 2.
f(5)=ln(12.4278817)
Step 3.2.4
The final answer is ln(12.4278817).
ln(12.4278817)
ln(12.4278817)
ln(12.4278817)
Step 4
Find the point at x=6.
Tap for more steps...
Step 4.1
Replace the variable x with 6 in the expression.
f(6)=2ln(sec(6))
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Evaluate sec(6).
f(6)=2ln(1.04148192)
Step 4.2.2
Simplify 2ln(1.04148192) by moving 2 inside the logarithm.
f(6)=ln(1.041481922)
Step 4.2.3
Raise 1.04148192 to the power of 2.
f(6)=ln(1.0846846)
Step 4.2.4
The final answer is ln(1.0846846).
ln(1.0846846)
ln(1.0846846)
ln(1.0846846)
Step 5
The log function can be graphed using the vertical asymptote at x=πn(for)(any)(integer)n and the points (1,1.23125294),(5,2.51994247),(6,0.08128925).
Vertical Asymptote: x=πn(for)(any)(integer)n
xy11.23152.5260.081
Step 6
 [x2  12  π  xdx ]