Calculus Examples

Graph natural log of (x^4)/((3x-2)^3)
ln(x4(3x-2)3)
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
Set the argument of the logarithm equal to zero.
x4(3x-2)3=0
Step 1.2
Solve for x.
Tap for more steps...
Step 1.2.1
Set the numerator equal to zero.
x4=0
Step 1.2.2
Solve the equation for x.
Tap for more steps...
Step 1.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±40
Step 1.2.2.2
Simplify ±40.
Tap for more steps...
Step 1.2.2.2.1
Rewrite 0 as 04.
x=±404
Step 1.2.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
x=±0
Step 1.2.2.2.3
Plus or minus 0 is 0.
x=0
x=0
x=0
x=0
Step 1.3
The vertical asymptote occurs at x=0.
Vertical Asymptote: x=0
Vertical Asymptote: x=0
Step 2
Find the point at x=1.
Tap for more steps...
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=ln((1)4(3(1)-2)3)
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
One to any power is one.
f(1)=ln(1(3(1)-2)3)
Step 2.2.2
Simplify the denominator.
Tap for more steps...
Step 2.2.2.1
Multiply 3 by 1.
f(1)=ln(1(3-2)3)
Step 2.2.2.2
Subtract 2 from 3.
f(1)=ln(113)
Step 2.2.2.3
One to any power is one.
f(1)=ln(11)
f(1)=ln(11)
Step 2.2.3
Divide 1 by 1.
f(1)=ln(1)
Step 2.2.4
The natural logarithm of 1 is 0.
f(1)=0
Step 2.2.5
The final answer is 0.
0
0
Step 2.3
Convert 0 to decimal.
y=0
y=0
Step 3
Find the point at x=2.
Tap for more steps...
Step 3.1
Replace the variable x with 2 in the expression.
f(2)=ln((2)4(3(2)-2)3)
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Raise 2 to the power of 4.
f(2)=ln(16(3(2)-2)3)
Step 3.2.2
Simplify the denominator.
Tap for more steps...
Step 3.2.2.1
Multiply 3 by 2.
f(2)=ln(16(6-2)3)
Step 3.2.2.2
Subtract 2 from 6.
f(2)=ln(1643)
Step 3.2.2.3
Raise 4 to the power of 3.
f(2)=ln(1664)
f(2)=ln(1664)
Step 3.2.3
Cancel the common factor of 16 and 64.
Tap for more steps...
Step 3.2.3.1
Factor 16 out of 16.
f(2)=ln(16(1)64)
Step 3.2.3.2
Cancel the common factors.
Tap for more steps...
Step 3.2.3.2.1
Factor 16 out of 64.
f(2)=ln(161164)
Step 3.2.3.2.2
Cancel the common factor.
f(2)=ln(161164)
Step 3.2.3.2.3
Rewrite the expression.
f(2)=ln(14)
f(2)=ln(14)
f(2)=ln(14)
Step 3.2.4
The final answer is ln(14).
ln(14)
ln(14)
Step 3.3
Convert ln(14) to decimal.
y=-1.38629436
y=-1.38629436
Step 4
Find the point at x=3.
Tap for more steps...
Step 4.1
Replace the variable x with 3 in the expression.
f(3)=ln((3)4(3(3)-2)3)
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Raise 3 to the power of 4.
f(3)=ln(81(3(3)-2)3)
Step 4.2.2
Simplify the denominator.
Tap for more steps...
Step 4.2.2.1
Multiply 3 by 3.
f(3)=ln(81(9-2)3)
Step 4.2.2.2
Subtract 2 from 9.
f(3)=ln(8173)
Step 4.2.2.3
Raise 7 to the power of 3.
f(3)=ln(81343)
f(3)=ln(81343)
Step 4.2.3
The final answer is ln(81343).
ln(81343)
ln(81343)
Step 4.3
Convert ln(81343) to decimal.
y=-1.44328129
y=-1.44328129
Step 5
The log function can be graphed using the vertical asymptote at x=0 and the points (1,0),(2,-1.38629436),(3,-1.44328129).
Vertical Asymptote: x=0
xy102-1.3863-1.443
Step 6
 [x2  12  π  xdx ]