Enter a problem...
Calculus Examples
ln(x4(3x-2)3)
Step 1
Step 1.1
Set the argument of the logarithm equal to zero.
x4(3x-2)3=0
Step 1.2
Solve for x.
Step 1.2.1
Set the numerator equal to zero.
x4=0
Step 1.2.2
Solve the equation for x.
Step 1.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±4√0
Step 1.2.2.2
Simplify ±4√0.
Step 1.2.2.2.1
Rewrite 0 as 04.
x=±4√04
Step 1.2.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
x=±0
Step 1.2.2.2.3
Plus or minus 0 is 0.
x=0
x=0
x=0
x=0
Step 1.3
The vertical asymptote occurs at x=0.
Vertical Asymptote: x=0
Vertical Asymptote: x=0
Step 2
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=ln((1)4(3(1)-2)3)
Step 2.2
Simplify the result.
Step 2.2.1
One to any power is one.
f(1)=ln(1(3(1)-2)3)
Step 2.2.2
Simplify the denominator.
Step 2.2.2.1
Multiply 3 by 1.
f(1)=ln(1(3-2)3)
Step 2.2.2.2
Subtract 2 from 3.
f(1)=ln(113)
Step 2.2.2.3
One to any power is one.
f(1)=ln(11)
f(1)=ln(11)
Step 2.2.3
Divide 1 by 1.
f(1)=ln(1)
Step 2.2.4
The natural logarithm of 1 is 0.
f(1)=0
Step 2.2.5
The final answer is 0.
0
0
Step 2.3
Convert 0 to decimal.
y=0
y=0
Step 3
Step 3.1
Replace the variable x with 2 in the expression.
f(2)=ln((2)4(3(2)-2)3)
Step 3.2
Simplify the result.
Step 3.2.1
Raise 2 to the power of 4.
f(2)=ln(16(3(2)-2)3)
Step 3.2.2
Simplify the denominator.
Step 3.2.2.1
Multiply 3 by 2.
f(2)=ln(16(6-2)3)
Step 3.2.2.2
Subtract 2 from 6.
f(2)=ln(1643)
Step 3.2.2.3
Raise 4 to the power of 3.
f(2)=ln(1664)
f(2)=ln(1664)
Step 3.2.3
Cancel the common factor of 16 and 64.
Step 3.2.3.1
Factor 16 out of 16.
f(2)=ln(16(1)64)
Step 3.2.3.2
Cancel the common factors.
Step 3.2.3.2.1
Factor 16 out of 64.
f(2)=ln(16⋅116⋅4)
Step 3.2.3.2.2
Cancel the common factor.
f(2)=ln(16⋅116⋅4)
Step 3.2.3.2.3
Rewrite the expression.
f(2)=ln(14)
f(2)=ln(14)
f(2)=ln(14)
Step 3.2.4
The final answer is ln(14).
ln(14)
ln(14)
Step 3.3
Convert ln(14) to decimal.
y=-1.38629436
y=-1.38629436
Step 4
Step 4.1
Replace the variable x with 3 in the expression.
f(3)=ln((3)4(3(3)-2)3)
Step 4.2
Simplify the result.
Step 4.2.1
Raise 3 to the power of 4.
f(3)=ln(81(3(3)-2)3)
Step 4.2.2
Simplify the denominator.
Step 4.2.2.1
Multiply 3 by 3.
f(3)=ln(81(9-2)3)
Step 4.2.2.2
Subtract 2 from 9.
f(3)=ln(8173)
Step 4.2.2.3
Raise 7 to the power of 3.
f(3)=ln(81343)
f(3)=ln(81343)
Step 4.2.3
The final answer is ln(81343).
ln(81343)
ln(81343)
Step 4.3
Convert ln(81343) to decimal.
y=-1.44328129
y=-1.44328129
Step 5
The log function can be graphed using the vertical asymptote at x=0 and the points (1,0),(2,-1.38629436),(3,-1.44328129).
Vertical Asymptote: x=0
xy102-1.3863-1.443
Step 6