Calculus Examples

Graph natural log of x^2+3x+7
ln(x2+3x+7)ln(x2+3x+7)
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
Set the argument of the logarithm equal to zero.
x2+3x+7=0x2+3x+7=0
Step 1.2
Solve for xx.
Tap for more steps...
Step 1.2.1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 1.2.2
Substitute the values a=1a=1, b=3b=3, and c=7c=7 into the quadratic formula and solve for xx.
-3±32-4(17)213±324(17)21
Step 1.2.3
Simplify.
Tap for more steps...
Step 1.2.3.1
Simplify the numerator.
Tap for more steps...
Step 1.2.3.1.1
Raise 33 to the power of 22.
x=-3±9-41721x=3±941721
Step 1.2.3.1.2
Multiply -417417.
Tap for more steps...
Step 1.2.3.1.2.1
Multiply -44 by 11.
x=-3±9-4721x=3±94721
Step 1.2.3.1.2.2
Multiply -44 by 77.
x=-3±9-2821x=3±92821
x=-3±9-2821x=3±92821
Step 1.2.3.1.3
Subtract 2828 from 99.
x=-3±-1921x=3±1921
Step 1.2.3.1.4
Rewrite -1919 as -1(19)1(19).
x=-3±-11921x=3±11921
Step 1.2.3.1.5
Rewrite -1(19)1(19) as -119119.
x=-3±-11921x=3±11921
Step 1.2.3.1.6
Rewrite -11 as ii.
x=-3±i1921x=3±i1921
x=-3±i1921x=3±i1921
Step 1.2.3.2
Multiply 22 by 11.
x=-3±i192x=3±i192
x=-3±i192x=3±i192
Step 1.2.4
Simplify the expression to solve for the ++ portion of the ±±.
Tap for more steps...
Step 1.2.4.1
Simplify the numerator.
Tap for more steps...
Step 1.2.4.1.1
Raise 33 to the power of 22.
x=-3±9-41721x=3±941721
Step 1.2.4.1.2
Multiply -417417.
Tap for more steps...
Step 1.2.4.1.2.1
Multiply -44 by 11.
x=-3±9-4721x=3±94721
Step 1.2.4.1.2.2
Multiply -44 by 77.
x=-3±9-2821x=3±92821
x=-3±9-2821x=3±92821
Step 1.2.4.1.3
Subtract 2828 from 99.
x=-3±-1921x=3±1921
Step 1.2.4.1.4
Rewrite -1919 as -1(19)1(19).
x=-3±-11921x=3±11921
Step 1.2.4.1.5
Rewrite -1(19)1(19) as -119119.
x=-3±-11921x=3±11921
Step 1.2.4.1.6
Rewrite -11 as ii.
x=-3±i1921x=3±i1921
x=-3±i1921x=3±i1921
Step 1.2.4.2
Multiply 22 by 11.
x=-3±i192x=3±i192
Step 1.2.4.3
Change the ±± to ++.
x=-3+i192x=3+i192
Step 1.2.4.4
Rewrite -33 as -1(3)1(3).
x=-13+i192x=13+i192
Step 1.2.4.5
Factor -11 out of i19i19.
x=-13-(-i19)2x=13(i19)2
Step 1.2.4.6
Factor -11 out of -1(3)-(-i19)1(3)(i19).
x=-1(3-i19)2x=1(3i19)2
Step 1.2.4.7
Move the negative in front of the fraction.
x=-3-i192x=3i192
x=-3-i192x=3i192
Step 1.2.5
Simplify the expression to solve for the - portion of the ±±.
Tap for more steps...
Step 1.2.5.1
Simplify the numerator.
Tap for more steps...
Step 1.2.5.1.1
Raise 33 to the power of 22.
x=-3±9-41721x=3±941721
Step 1.2.5.1.2
Multiply -417417.
Tap for more steps...
Step 1.2.5.1.2.1
Multiply -44 by 11.
x=-3±9-4721x=3±94721
Step 1.2.5.1.2.2
Multiply -44 by 77.
x=-3±9-2821x=3±92821
x=-3±9-2821x=3±92821
Step 1.2.5.1.3
Subtract 2828 from 99.
x=-3±-1921x=3±1921
Step 1.2.5.1.4
Rewrite -1919 as -1(19)1(19).
x=-3±-11921x=3±11921
Step 1.2.5.1.5
Rewrite -1(19)1(19) as -119119.
x=-3±-11921x=3±11921
Step 1.2.5.1.6
Rewrite -11 as ii.
x=-3±i1921x=3±i1921
x=-3±i1921x=3±i1921
Step 1.2.5.2
Multiply 22 by 11.
x=-3±i192x=3±i192
Step 1.2.5.3
Change the ±± to -.
x=-3-i192x=3i192
Step 1.2.5.4
Rewrite -33 as -1(3)1(3).
x=-13-i192x=13i192
Step 1.2.5.5
Factor -11 out of -i19i19.
x=-13-(i19)2x=13(i19)2
Step 1.2.5.6
Factor -11 out of -1(3)-(i19)1(3)(i19).
x=-1(3+i19)2x=1(3+i19)2
Step 1.2.5.7
Move the negative in front of the fraction.
x=-3+i192x=3+i192
x=-3+i192x=3+i192
Step 1.2.6
The final answer is the combination of both solutions.
x=-3-i192,-3+i192x=3i192,3+i192
x=-3-i192,-3+i192x=3i192,3+i192
Step 1.3
The vertical asymptote occurs at x=-3-i192,x=-3+i192x=3i192,x=3+i192.
Vertical Asymptote: x=-3-i192,x=-3+i192x=3i192,x=3+i192
Vertical Asymptote: x=-3-i192,x=-3+i192x=3i192,x=3+i192
Step 2
Find the point at x=1x=1.
Tap for more steps...
Step 2.1
Replace the variable xx with 11 in the expression.
f(1)=ln((1)2+3(1)+7)f(1)=ln((1)2+3(1)+7)
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
One to any power is one.
f(1)=ln(1+3(1)+7)f(1)=ln(1+3(1)+7)
Step 2.2.1.2
Multiply 33 by 11.
f(1)=ln(1+3+7)f(1)=ln(1+3+7)
f(1)=ln(1+3+7)f(1)=ln(1+3+7)
Step 2.2.2
Simplify by adding numbers.
Tap for more steps...
Step 2.2.2.1
Add 11 and 33.
f(1)=ln(4+7)f(1)=ln(4+7)
Step 2.2.2.2
Add 44 and 77.
f(1)=ln(11)f(1)=ln(11)
f(1)=ln(11)f(1)=ln(11)
Step 2.2.3
The final answer is ln(11)ln(11).
ln(11)ln(11)
ln(11)ln(11)
Step 2.3
Convert ln(11)ln(11) to decimal.
y=2.39789527y=2.39789527
y=2.39789527y=2.39789527
Step 3
Find the point at x=2x=2.
Tap for more steps...
Step 3.1
Replace the variable xx with 22 in the expression.
f(2)=ln((2)2+3(2)+7)f(2)=ln((2)2+3(2)+7)
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Raise 22 to the power of 22.
f(2)=ln(4+3(2)+7)f(2)=ln(4+3(2)+7)
Step 3.2.1.2
Multiply 33 by 22.
f(2)=ln(4+6+7)f(2)=ln(4+6+7)
f(2)=ln(4+6+7)f(2)=ln(4+6+7)
Step 3.2.2
Simplify by adding numbers.
Tap for more steps...
Step 3.2.2.1
Add 44 and 66.
f(2)=ln(10+7)f(2)=ln(10+7)
Step 3.2.2.2
Add 1010 and 77.
f(2)=ln(17)f(2)=ln(17)
f(2)=ln(17)f(2)=ln(17)
Step 3.2.3
The final answer is ln(17)ln(17).
ln(17)ln(17)
ln(17)ln(17)
Step 3.3
Convert ln(17)ln(17) to decimal.
y=2.83321334y=2.83321334
y=2.83321334y=2.83321334
Step 4
Find the point at x=3x=3.
Tap for more steps...
Step 4.1
Replace the variable xx with 33 in the expression.
f(3)=ln((3)2+3(3)+7)f(3)=ln((3)2+3(3)+7)
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Raise 33 to the power of 22.
f(3)=ln(9+3(3)+7)f(3)=ln(9+3(3)+7)
Step 4.2.1.2
Multiply 33 by 33.
f(3)=ln(9+9+7)f(3)=ln(9+9+7)
f(3)=ln(9+9+7)f(3)=ln(9+9+7)
Step 4.2.2
Simplify by adding numbers.
Tap for more steps...
Step 4.2.2.1
Add 99 and 99.
f(3)=ln(18+7)f(3)=ln(18+7)
Step 4.2.2.2
Add 1818 and 77.
f(3)=ln(25)f(3)=ln(25)
f(3)=ln(25)f(3)=ln(25)
Step 4.2.3
The final answer is ln(25)ln(25).
ln(25)ln(25)
ln(25)ln(25)
Step 4.3
Convert ln(25)ln(25) to decimal.
y=3.21887582y=3.21887582
y=3.21887582y=3.21887582
Step 5
The log function can be graphed using the vertical asymptote at x=-3-i192,x=-3+i192x=3i192,x=3+i192 and the points (1,2.39789527),(2,2.83321334),(3,3.21887582)(1,2.39789527),(2,2.83321334),(3,3.21887582).
Vertical Asymptote: x=-3-i192,x=-3+i192x=3i192,x=3+i192
xy12.39822.83333.219xy12.39822.83333.219
Step 6
 [x2  12  π  xdx ]  x2  12  π  xdx