Calculus Examples

Graph natural log of xe^x
ln(xex)
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
Find where the expression ln(x)+x is undefined.
x0
Step 1.2
Since ln(x)+x as x0 from the left and ln(x)+x- as x0 from the right, then x=0 is a vertical asymptote.
x=0
Step 1.3
Ignoring the logarithm, consider the rational function R(x)=axnbxm where n is the degree of the numerator and m is the degree of the denominator.
1. If n<m, then the x-axis, y=0, is the horizontal asymptote.
2. If n=m, then the horizontal asymptote is the line y=ab.
3. If n>m, then there is no horizontal asymptote (there is an oblique asymptote).
Step 1.4
There are no horizontal asymptotes because Q(x) is 1.
No Horizontal Asymptotes
Step 1.5
No oblique asymptotes are present for logarithmic and trigonometric functions.
No Oblique Asymptotes
Step 1.6
This is the set of all asymptotes.
Vertical Asymptotes: x=0
No Horizontal Asymptotes
Vertical Asymptotes: x=0
No Horizontal Asymptotes
Step 2
Find the point at x=1.
Tap for more steps...
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=ln((1)e1)
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Multiply e1 by 1.
f(1)=ln(e)
Step 2.2.2
Use logarithm rules to move 1 out of the exponent.
f(1)=1ln(e)
Step 2.2.3
Multiply ln(e) by 1.
f(1)=ln(e)
Step 2.2.4
The natural logarithm of e is 1.
f(1)=1
Step 2.2.5
The final answer is 1.
1
1
Step 2.3
Convert 1 to decimal.
y=1
y=1
Step 3
Find the point at x=2.
Tap for more steps...
Step 3.1
Replace the variable x with 2 in the expression.
f(2)=ln((2)e2)
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Multiply 2 by e2.
f(2)=ln(2e2)
Step 3.2.2
The final answer is ln(2e2).
ln(2e2)
ln(2e2)
Step 3.3
Convert ln(2e2) to decimal.
y=2.69314718
y=2.69314718
Step 4
Find the point at x=3.
Tap for more steps...
Step 4.1
Replace the variable x with 3 in the expression.
f(3)=ln((3)e3)
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Multiply 3 by e3.
f(3)=ln(3e3)
Step 4.2.2
The final answer is ln(3e3).
ln(3e3)
ln(3e3)
Step 4.3
Convert ln(3e3) to decimal.
y=4.09861228
y=4.09861228
Step 5
The log function can be graphed using the vertical asymptote at x=0 and the points (1,1),(2,2.69314718),(3,4.09861228).
Vertical Asymptote: x=0
xy1122.69334.099
Step 6
image of graph
ln(xex)
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]