Enter a problem...
Calculus Examples
ln(30142)=-0.03tln(30142)=−0.03t
Step 1
Rewrite the equation as -0.03t=ln(30142)−0.03t=ln(30142).
-0.03t=ln(30142)−0.03t=ln(30142)
Step 2
Step 2.1
Factor 22 out of 3030.
-0.03t=ln(2(15)142)−0.03t=ln(2(15)142)
Step 2.2
Factor 22 out of 142142.
-0.03t=ln(2⋅152⋅71)−0.03t=ln(2⋅152⋅71)
Step 2.3
Cancel the common factor.
-0.03t=ln(2⋅152⋅71)−0.03t=ln(2⋅152⋅71)
Step 2.4
Rewrite the expression.
-0.03t=ln(1571)−0.03t=ln(1571)
-0.03t=ln(1571)−0.03t=ln(1571)
Step 3
Step 3.1
Divide each term in -0.03t=ln(1571)−0.03t=ln(1571) by -0.03−0.03.
-0.03t-0.03=ln(1571)-0.03−0.03t−0.03=ln(1571)−0.03
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of -0.03−0.03.
Step 3.2.1.1
Cancel the common factor.
-0.03t-0.03=ln(1571)-0.03−0.03t−0.03=ln(1571)−0.03
Step 3.2.1.2
Divide tt by 11.
t=ln(1571)-0.03t=ln(1571)−0.03
t=ln(1571)-0.03t=ln(1571)−0.03
t=ln(1571)-0.03t=ln(1571)−0.03
Step 3.3
Simplify the right side.
Step 3.3.1
Move the negative in front of the fraction.
t=-ln(1571)0.03t=−ln(1571)0.03
Step 3.3.2
Replace ee with an approximation.
t=-log2.71828182(1571)0.03t=−log2.71828182(1571)0.03
Step 3.3.3
Divide 1515 by 7171.
t=-log2.71828182(0.2112676)0.03t=−log2.71828182(0.2112676)0.03
Step 3.3.4
Log base 2.718281822.71828182 of 0.21126760.2112676 is approximately -1.55462967−1.55462967.
t=--1.554629670.03t=−−1.554629670.03
Step 3.3.5
Divide -1.55462967−1.55462967 by 0.030.03.
t=--51.82098919t=−−51.82098919
Step 3.3.6
Multiply -1−1 by -51.82098919−51.82098919.
t=51.82098919t=51.82098919
t=51.82098919t=51.82098919
t=51.82098919t=51.82098919