Calculus Examples

Solve for t natural log of 30/142=-0.03t
ln(30142)=-0.03tln(30142)=0.03t
Step 1
Rewrite the equation as -0.03t=ln(30142)0.03t=ln(30142).
-0.03t=ln(30142)0.03t=ln(30142)
Step 2
Reduce the expression 3014230142 by cancelling the common factors.
Tap for more steps...
Step 2.1
Factor 22 out of 3030.
-0.03t=ln(2(15)142)0.03t=ln(2(15)142)
Step 2.2
Factor 22 out of 142142.
-0.03t=ln(215271)0.03t=ln(215271)
Step 2.3
Cancel the common factor.
-0.03t=ln(215271)0.03t=ln(215271)
Step 2.4
Rewrite the expression.
-0.03t=ln(1571)0.03t=ln(1571)
-0.03t=ln(1571)0.03t=ln(1571)
Step 3
Divide each term in -0.03t=ln(1571)0.03t=ln(1571) by -0.030.03 and simplify.
Tap for more steps...
Step 3.1
Divide each term in -0.03t=ln(1571)0.03t=ln(1571) by -0.030.03.
-0.03t-0.03=ln(1571)-0.030.03t0.03=ln(1571)0.03
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Cancel the common factor of -0.030.03.
Tap for more steps...
Step 3.2.1.1
Cancel the common factor.
-0.03t-0.03=ln(1571)-0.030.03t0.03=ln(1571)0.03
Step 3.2.1.2
Divide tt by 11.
t=ln(1571)-0.03t=ln(1571)0.03
t=ln(1571)-0.03t=ln(1571)0.03
t=ln(1571)-0.03t=ln(1571)0.03
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Move the negative in front of the fraction.
t=-ln(1571)0.03t=ln(1571)0.03
Step 3.3.2
Replace ee with an approximation.
t=-log2.71828182(1571)0.03t=log2.71828182(1571)0.03
Step 3.3.3
Divide 1515 by 7171.
t=-log2.71828182(0.2112676)0.03t=log2.71828182(0.2112676)0.03
Step 3.3.4
Log base 2.718281822.71828182 of 0.21126760.2112676 is approximately -1.554629671.55462967.
t=--1.554629670.03t=1.554629670.03
Step 3.3.5
Divide -1.554629671.55462967 by 0.030.03.
t=--51.82098919t=51.82098919
Step 3.3.6
Multiply -11 by -51.8209891951.82098919.
t=51.82098919t=51.82098919
t=51.82098919t=51.82098919
t=51.82098919t=51.82098919
 [x2  12  π  xdx ]  x2  12  π  xdx