Calculus Examples

Solve for t 2.1+1.5sin(1.8t+0.3)=3
Step 1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from .
Step 2
Divide each term in by and simplify.
Tap for more steps...
Step 2.1
Divide each term in by .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Divide by .
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Divide by .
Step 3
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 4
Simplify the right side.
Tap for more steps...
Step 4.1
Evaluate .
Step 5
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 5.1
Subtract from both sides of the equation.
Step 5.2
Subtract from .
Step 6
Divide each term in by and simplify.
Tap for more steps...
Step 6.1
Divide each term in by .
Step 6.2
Simplify the left side.
Tap for more steps...
Step 6.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.2.1.1
Cancel the common factor.
Step 6.2.1.2
Divide by .
Step 6.3
Simplify the right side.
Tap for more steps...
Step 6.3.1
Divide by .
Step 7
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 8
Solve for .
Tap for more steps...
Step 8.1
Subtract from .
Step 8.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 8.2.1
Subtract from both sides of the equation.
Step 8.2.2
Subtract from .
Step 8.3
Divide each term in by and simplify.
Tap for more steps...
Step 8.3.1
Divide each term in by .
Step 8.3.2
Simplify the left side.
Tap for more steps...
Step 8.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 8.3.2.1.1
Cancel the common factor.
Step 8.3.2.1.2
Divide by .
Step 8.3.3
Simplify the right side.
Tap for more steps...
Step 8.3.3.1
Divide by .
Step 9
Find the period of .
Tap for more steps...
Step 9.1
The period of the function can be calculated using .
Step 9.2
Replace with in the formula for period.
Step 9.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 9.4
Replace with an approximation.
Step 9.5
Multiply by .
Step 9.6
Divide by .
Step 10
The period of the function is so values will repeat every radians in both directions.
, for any integer