Enter a problem...
Calculus Examples
2pr-3456r2=02pr−3456r2=0
Step 1
Step 1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
1,r2,11,r2,1
Step 1.2
The LCM of one and any expression is the expression.
r2r2
r2r2
Step 2
Step 2.1
Multiply each term in 2pr-3456r2=02pr−3456r2=0 by r2r2.
2pr⋅r2-3456r2r2=0r22pr⋅r2−3456r2r2=0r2
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply rr by r2r2 by adding the exponents.
Step 2.2.1.1.1
Move r2r2.
2p(r2r)-3456r2r2=0r22p(r2r)−3456r2r2=0r2
Step 2.2.1.1.2
Multiply r2r2 by rr.
Step 2.2.1.1.2.1
Raise rr to the power of 11.
2p(r2r1)-3456r2r2=0r22p(r2r1)−3456r2r2=0r2
Step 2.2.1.1.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
2pr2+1-3456r2r2=0r22pr2+1−3456r2r2=0r2
2pr2+1-3456r2r2=0r22pr2+1−3456r2r2=0r2
Step 2.2.1.1.3
Add 22 and 11.
2pr3-3456r2r2=0r22pr3−3456r2r2=0r2
2pr3-3456r2r2=0r22pr3−3456r2r2=0r2
Step 2.2.1.2
Cancel the common factor of r2r2.
Step 2.2.1.2.1
Move the leading negative in -3456r2−3456r2 into the numerator.
2pr3+-3456r2r2=0r22pr3+−3456r2r2=0r2
Step 2.2.1.2.2
Cancel the common factor.
2pr3+-3456r2r2=0r2
Step 2.2.1.2.3
Rewrite the expression.
2pr3-3456=0r2
2pr3-3456=0r2
2pr3-3456=0r2
2pr3-3456=0r2
Step 2.3
Simplify the right side.
Step 2.3.1
Multiply 0 by r2.
2pr3-3456=0
2pr3-3456=0
2pr3-3456=0
Step 3
Step 3.1
Add 3456 to both sides of the equation.
2pr3=3456
Step 3.2
Divide each term in 2pr3=3456 by 2p and simplify.
Step 3.2.1
Divide each term in 2pr3=3456 by 2p.
2pr32p=34562p
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of 2.
Step 3.2.2.1.1
Cancel the common factor.
2pr32p=34562p
Step 3.2.2.1.2
Rewrite the expression.
pr3p=34562p
pr3p=34562p
Step 3.2.2.2
Cancel the common factor of p.
Step 3.2.2.2.1
Cancel the common factor.
pr3p=34562p
Step 3.2.2.2.2
Divide r3 by 1.
r3=34562p
r3=34562p
r3=34562p
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Cancel the common factor of 3456 and 2.
Step 3.2.3.1.1
Factor 2 out of 3456.
r3=2⋅17282p
Step 3.2.3.1.2
Cancel the common factors.
Step 3.2.3.1.2.1
Factor 2 out of 2p.
r3=2⋅17282(p)
Step 3.2.3.1.2.2
Cancel the common factor.
r3=2⋅17282p
Step 3.2.3.1.2.3
Rewrite the expression.
r3=1728p
r3=1728p
r3=1728p
r3=1728p
r3=1728p
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
r=3√1728p
Step 3.4
Simplify 3√1728p.
Step 3.4.1
Rewrite 3√1728p as 3√17283√p.
r=3√17283√p
Step 3.4.2
Simplify the numerator.
Step 3.4.2.1
Rewrite 1728 as 123.
r=3√1233√p
Step 3.4.2.2
Pull terms out from under the radical, assuming real numbers.
r=123√p
r=123√p
Step 3.4.3
Multiply 123√p by 3√p23√p2.
r=123√p⋅3√p23√p2
Step 3.4.4
Combine and simplify the denominator.
Step 3.4.4.1
Multiply 123√p by 3√p23√p2.
r=123√p23√p3√p2
Step 3.4.4.2
Raise 3√p to the power of 1.
r=123√p23√p13√p2
Step 3.4.4.3
Use the power rule aman=am+n to combine exponents.
r=123√p23√p1+2
Step 3.4.4.4
Add 1 and 2.
r=123√p23√p3
Step 3.4.4.5
Rewrite 3√p3 as p.
Step 3.4.4.5.1
Use n√ax=axn to rewrite 3√p as p13.
r=123√p2(p13)3
Step 3.4.4.5.2
Apply the power rule and multiply exponents, (am)n=amn.
r=123√p2p13⋅3
Step 3.4.4.5.3
Combine 13 and 3.
r=123√p2p33
Step 3.4.4.5.4
Cancel the common factor of 3.
Step 3.4.4.5.4.1
Cancel the common factor.
r=123√p2p33
Step 3.4.4.5.4.2
Rewrite the expression.
r=123√p2p1
r=123√p2p1
Step 3.4.4.5.5
Simplify.
r=123√p2p
r=123√p2p
r=123√p2p
Step 3.4.5
Rewrite 3√p2 as 3√p2.
r=123√p2p
r=123√p2p
r=123√p2p