Enter a problem...
Calculus Examples
Step 1
Set the numerator equal to zero.
Step 2
Step 2.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.2
Simplify the exponent.
Step 2.2.1
Simplify the left side.
Step 2.2.1.1
Simplify .
Step 2.2.1.1.1
Rewrite the expression using the negative exponent rule .
Step 2.2.1.1.2
Combine and .
Step 2.2.1.1.3
Move the negative in front of the fraction.
Step 2.2.1.1.4
Change the sign of the exponent by rewriting the base as its reciprocal.
Step 2.2.1.1.5
Use the power rule to distribute the exponent.
Step 2.2.1.1.5.1
Apply the product rule to .
Step 2.2.1.1.5.2
Apply the product rule to .
Step 2.2.1.1.6
Reduce the expression by cancelling the common factors.
Step 2.2.1.1.6.1
Rewrite as .
Step 2.2.1.1.6.2
Apply the power rule and multiply exponents, .
Step 2.2.1.1.6.3
Cancel the common factor of .
Step 2.2.1.1.6.3.1
Cancel the common factor.
Step 2.2.1.1.6.3.2
Rewrite the expression.
Step 2.2.1.1.6.4
Raise to the power of .
Step 2.2.1.1.7
Simplify the numerator.
Step 2.2.1.1.7.1
Multiply the exponents in .
Step 2.2.1.1.7.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.1.7.1.2
Cancel the common factor of .
Step 2.2.1.1.7.1.2.1
Cancel the common factor.
Step 2.2.1.1.7.1.2.2
Rewrite the expression.
Step 2.2.1.1.7.1.3
Cancel the common factor of .
Step 2.2.1.1.7.1.3.1
Cancel the common factor.
Step 2.2.1.1.7.1.3.2
Rewrite the expression.
Step 2.2.1.1.7.2
Simplify.
Step 2.2.2
Simplify the right side.
Step 2.2.2.1
Simplify .
Step 2.2.2.1.1
Rewrite the expression using the negative exponent rule .
Step 2.2.2.1.2
Simplify the denominator.
Step 2.2.2.1.2.1
Rewrite as .
Step 2.2.2.1.2.2
Apply the power rule and multiply exponents, .
Step 2.2.2.1.2.3
Cancel the common factor of .
Step 2.2.2.1.2.3.1
Cancel the common factor.
Step 2.2.2.1.2.3.2
Rewrite the expression.
Step 2.2.2.1.2.4
Raising to any positive power yields .
Step 2.2.2.2
The equation cannot be solved because it is undefined.