Calculus Examples

Solve for x e^( natural log of x^2)-16=0
eln(x2)-16=0eln(x2)16=0
Step 1
Add 1616 to both sides of the equation.
eln(x2)=16eln(x2)=16
Step 2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(eln(x2))=ln(16)ln(eln(x2))=ln(16)
Step 3
Expand the left side.
Tap for more steps...
Step 3.1
Expand ln(eln(x2))ln(eln(x2)) by moving ln(x2)ln(x2) outside the logarithm.
ln(x2)ln(e)=ln(16)ln(x2)ln(e)=ln(16)
Step 3.2
The natural logarithm of ee is 11.
ln(x2)1=ln(16)ln(x2)1=ln(16)
Step 3.3
Multiply ln(x2)ln(x2) by 11.
ln(x2)=ln(16)ln(x2)=ln(16)
ln(x2)=ln(16)ln(x2)=ln(16)
Step 4
To solve for xx, rewrite the equation using properties of logarithms.
eln(x2)=eln(16)eln(x2)=eln(16)
Step 5
Rewrite ln(x2)=ln(16)ln(x2)=ln(16) in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b1b1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
eln(16)=x2eln(16)=x2
Step 6
Solve for xx.
Tap for more steps...
Step 6.1
Rewrite the equation as x2=eln(16)x2=eln(16).
x2=eln(16)x2=eln(16)
Step 6.2
Exponentiation and log are inverse functions.
x2=16x2=16
Step 6.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±16x=±16
Step 6.4
Simplify ±16±16.
Tap for more steps...
Step 6.4.1
Rewrite 1616 as 4242.
x=±42x=±42
Step 6.4.2
Pull terms out from under the radical, assuming positive real numbers.
x=±4x=±4
x=±4x=±4
Step 6.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 6.5.1
First, use the positive value of the ±± to find the first solution.
x=4x=4
Step 6.5.2
Next, use the negative value of the ±± to find the second solution.
x=-4x=4
Step 6.5.3
The complete solution is the result of both the positive and negative portions of the solution.
x=4,-4x=4,4
x=4,-4x=4,4
x=4,-4x=4,4
 [x2  12  π  xdx ]  x2  12  π  xdx