Enter a problem...
Calculus Examples
Step 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2
Step 2.1
Rewrite as .
Step 2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 2.3
Plus or minus is .
Step 3
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 4
Step 4.1
The exact value of is .
Step 5
Step 5.1
Divide each term in by .
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of .
Step 5.2.1.1
Cancel the common factor.
Step 5.2.1.2
Divide by .
Step 5.3
Simplify the right side.
Step 5.3.1
Divide by .
Step 6
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 7
Step 7.1
Simplify.
Step 7.1.1
Multiply by .
Step 7.1.2
Add and .
Step 7.2
Divide each term in by and simplify.
Step 7.2.1
Divide each term in by .
Step 7.2.2
Simplify the left side.
Step 7.2.2.1
Cancel the common factor of .
Step 7.2.2.1.1
Cancel the common factor.
Step 7.2.2.1.2
Divide by .
Step 8
Step 8.1
The period of the function can be calculated using .
Step 8.2
Replace with in the formula for period.
Step 8.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 9
The period of the function is so values will repeat every radians in both directions.
, for any integer
Step 10
Consolidate the answers.
, for any integer