Calculus Examples

Solve for x (1.1x- square root of x^2+9)/( square root of x^2+9)=0
Step 1
Cross multiply.
Tap for more steps...
Step 1.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Simplify .
Tap for more steps...
Step 1.2.1.1
Remove parentheses.
Step 1.2.1.2
Multiply by .
Step 2
Solve for .
Tap for more steps...
Step 2.1
Rewrite the equation as .
Step 2.2
Subtract from both sides of the equation.
Step 3
To remove the radical on the left side of the equation, square both sides of the equation.
Step 4
Simplify each side of the equation.
Tap for more steps...
Step 4.1
Use to rewrite as .
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Simplify .
Tap for more steps...
Step 4.2.1.1
Apply the product rule to .
Step 4.2.1.2
Raise to the power of .
Step 4.2.1.3
Multiply by .
Step 4.2.1.4
Multiply the exponents in .
Tap for more steps...
Step 4.2.1.4.1
Apply the power rule and multiply exponents, .
Step 4.2.1.4.2
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.4.2.1
Cancel the common factor.
Step 4.2.1.4.2.2
Rewrite the expression.
Step 4.2.1.5
Simplify.
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Simplify .
Tap for more steps...
Step 4.3.1.1
Apply the product rule to .
Step 4.3.1.2
Raise to the power of .
Step 5
Solve for .
Tap for more steps...
Step 5.1
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 5.1.1
Subtract from both sides of the equation.
Step 5.1.2
Subtract from .
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Divide by .
Step 5.3.3
Simplify the right side.
Tap for more steps...
Step 5.3.3.1
Divide by .
Step 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 5.5.1
First, use the positive value of the to find the first solution.
Step 5.5.2
Next, use the negative value of the to find the second solution.
Step 5.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 6
Exclude the solutions that do not make true.
Step 7
The result can be shown in multiple forms.
Exact Form:
Decimal Form: