Calculus Examples

Solve for x (27)^(x+6)=(3)^(x^2)
Step 1
Create equivalent expressions in the equation that all have equal bases.
Step 2
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Simplify .
Tap for more steps...
Step 3.1.1
Rewrite.
Step 3.1.2
Simplify by adding zeros.
Step 3.1.3
Apply the distributive property.
Step 3.1.4
Multiply by .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Factor the left side of the equation.
Tap for more steps...
Step 3.3.1
Factor out of .
Tap for more steps...
Step 3.3.1.1
Reorder the expression.
Tap for more steps...
Step 3.3.1.1.1
Move .
Step 3.3.1.1.2
Reorder and .
Step 3.3.1.2
Factor out of .
Step 3.3.1.3
Factor out of .
Step 3.3.1.4
Rewrite as .
Step 3.3.1.5
Factor out of .
Step 3.3.1.6
Factor out of .
Step 3.3.2
Factor.
Tap for more steps...
Step 3.3.2.1
Factor using the AC method.
Tap for more steps...
Step 3.3.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 3.3.2.1.2
Write the factored form using these integers.
Step 3.3.2.2
Remove unnecessary parentheses.
Step 3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.5
Set equal to and solve for .
Tap for more steps...
Step 3.5.1
Set equal to .
Step 3.5.2
Add to both sides of the equation.
Step 3.6
Set equal to and solve for .
Tap for more steps...
Step 3.6.1
Set equal to .
Step 3.6.2
Subtract from both sides of the equation.
Step 3.7
The final solution is all the values that make true.