Enter a problem...
Calculus Examples
12⋅9.1⋅10-31⋅v2=1.6⋅10-19⋅175⋅106
Step 1
Step 1.1
Multiply 12⋅9.1⋅10-31.
Step 1.1.1
Combine 9.1 and 12.
9.12⋅10-31⋅v2=1.6⋅10-19⋅175⋅106
Step 1.1.2
Combine 9.12 and 10-31.
9.1⋅10-312⋅v2=1.6⋅10-19⋅175⋅106
9.1⋅10-312⋅v2=1.6⋅10-19⋅175⋅106
Step 1.2
Divide using scientific notation.
Step 1.2.1
Group coefficients together and exponents together to divide numbers in scientific notation.
(9.12)(10-311)⋅v2=1.6⋅10-19⋅175⋅106
Step 1.2.2
Divide 9.1 by 2.
4.5510-311⋅v2=1.6⋅10-19⋅175⋅106
Step 1.2.3
Divide 10-31 by 1.
4.55⋅10-31⋅v2=1.6⋅10-19⋅175⋅106
4.55⋅10-31⋅v2=1.6⋅10-19⋅175⋅106
Step 1.3
Move the decimal point in 175 to the left by 2 places and increase the power of 106 by 2.
4.55⋅10-31⋅v2=1.6⋅10-19⋅1.75⋅108
Step 1.4
Multiply 1.6 by 1.75.
4.55⋅10-31⋅v2=2.8(10-19⋅108)
Step 1.5
Multiply 10-19 by 108 by adding the exponents.
Step 1.5.1
Use the power rule aman=am+n to combine exponents.
4.55⋅10-31⋅v2=2.8⋅10-19+8
Step 1.5.2
Add -19 and 8.
4.55⋅10-31⋅v2=2.8⋅10-11
4.55⋅10-31⋅v2=2.8⋅10-11
4.55⋅10-31⋅v2=2.8⋅10-11
Step 2
Step 2.1
Divide each term in 4.55⋅10-31⋅v2=2.8⋅10-11 by 4.55⋅10-31.
4.55⋅10-31⋅v24.55⋅10-31=2.8⋅10-114.55⋅10-31
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 4.55.
Step 2.2.1.1
Cancel the common factor.
4.55⋅10-31⋅v24.55⋅10-31=2.8⋅10-114.55⋅10-31
Step 2.2.1.2
Rewrite the expression.
10-31⋅v210-31=2.8⋅10-114.55⋅10-31
10-31⋅v210-31=2.8⋅10-114.55⋅10-31
Step 2.2.2
Rewrite the expression using the negative exponent rule b-n=1bn.
11031v210-31=2.8⋅10-114.55⋅10-31
Step 2.2.3
Rewrite the expression using the negative exponent rule b-n=1bn.
11031v211031=2.8⋅10-114.55⋅10-31
Step 2.2.4
Combine 11031 and v2.
v2103111031=2.8⋅10-114.55⋅10-31
Step 2.2.5
Multiply the numerator by the reciprocal of the denominator.
v21031⋅1031=2.8⋅10-114.55⋅10-31
Step 2.2.6
Cancel the common factor of 1031.
Step 2.2.6.1
Cancel the common factor.
v21031⋅1031=2.8⋅10-114.55⋅10-31
Step 2.2.6.2
Rewrite the expression.
v2=2.8⋅10-114.55⋅10-31
v2=2.8⋅10-114.55⋅10-31
v2=2.8⋅10-114.55⋅10-31
Step 2.3
Simplify the right side.
Step 2.3.1
Divide using scientific notation.
Step 2.3.1.1
Group coefficients together and exponents together to divide numbers in scientific notation.
v2=(2.84.55)(10-1110-31)
Step 2.3.1.2
Divide 2.8 by 4.55.
v2=0.‾61538410-1110-31
Step 2.3.1.3
Subtract the exponent from the denominator from the exponent of the numerator for the same base
v2=0.‾615384⋅10-11-31⋅-1
Step 2.3.1.4
Multiply -31 by -1.
v2=0.‾615384⋅10-11+31
Step 2.3.1.5
Add -11 and 31.
v2=0.‾615384⋅1020
v2=0.‾615384⋅1020
Step 2.3.2
Move the decimal point in 0.‾615384 to the right by 1 place and decrease the power of 1020 by 1.
v2=6.‾153846⋅1019
v2=6.‾153846⋅1019
v2=6.‾153846⋅1019
Step 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
v=±√6.‾153846⋅1019
Step 4
Step 4.1
Rewrite 6.‾153846⋅1019 as 0.‾615384⋅1020.
v=±√0.‾615384⋅1020
Step 4.2
Rewrite √0.‾615384⋅1020 as √0.‾615384⋅√1020.
v=±√0.‾615384⋅√1020
Step 4.3
Evaluate the root.
v=±0.78446454⋅√1020
Step 4.4
Rewrite 1020 as (1010)2.
v=±0.78446454⋅√(1010)2
Step 4.5
Pull terms out from under the radical, assuming positive real numbers.
v=±0.78446454⋅1010
Step 4.6
Move the decimal point in 0.78446454 to the right by 1 place and decrease the power of 1010 by 1.
v=±7.8446454⋅109
v=±7.8446454⋅109
Step 5
Step 5.1
First, use the positive value of the ± to find the first solution.
v=7.8446454⋅109
Step 5.2
Next, use the negative value of the ± to find the second solution.
v=-7.8446454⋅109
Step 5.3
The complete solution is the result of both the positive and negative portions of the solution.
v=7.8446454⋅109,-7.8446454⋅109
v=7.8446454⋅109,-7.8446454⋅109
Step 6
The result can be shown in multiple forms.
Scientific Notation:
v=7.8446454⋅109,-7.8446454⋅109
Expanded Form:
v=7844645405.52736,-7844645405.52736