Enter a problem...
Calculus Examples
-ln(1-√y2x2+1)=ln(x)+c−ln⎛⎝1−√y2x2+1⎞⎠=ln(x)+c
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Write 11 as a fraction with a common denominator.
-ln(1-√y2x2+x2x2)=ln(x)+c−ln⎛⎝1−√y2x2+x2x2⎞⎠=ln(x)+c
Step 1.1.2
Combine the numerators over the common denominator.
-ln(1-√y2+x2x2)=ln(x)+c−ln⎛⎝1−√y2+x2x2⎞⎠=ln(x)+c
Step 1.1.3
Rewrite y2+x2x2y2+x2x2 as (1x)2(y2+x2)(1x)2(y2+x2).
Step 1.1.3.1
Factor the perfect power 1212 out of y2+x2y2+x2.
-ln(1-√12(y2+x2)x2)=ln(x)+c−ln⎛⎝1−√12(y2+x2)x2⎞⎠=ln(x)+c
Step 1.1.3.2
Factor the perfect power x2x2 out of x2x2.
-ln(1-√12(y2+x2)x2⋅1)=ln(x)+c−ln⎛⎝1−√12(y2+x2)x2⋅1⎞⎠=ln(x)+c
Step 1.1.3.3
Rearrange the fraction 12(y2+x2)x2⋅112(y2+x2)x2⋅1.
-ln(1-√(1x)2(y2+x2))=ln(x)+c−ln⎛⎝1−√(1x)2(y2+x2)⎞⎠=ln(x)+c
-ln(1-√(1x)2(y2+x2))=ln(x)+c−ln⎛⎝1−√(1x)2(y2+x2)⎞⎠=ln(x)+c
Step 1.1.4
Pull terms out from under the radical.
-ln(1-(1x√y2+x2))=ln(x)+c−ln(1−(1x√y2+x2))=ln(x)+c
Step 1.1.5
Combine 1x1x and √y2+x2√y2+x2.
-ln(1-√y2+x2x)=ln(x)+c−ln(1−√y2+x2x)=ln(x)+c
-ln(1-√y2+x2x)=ln(x)+c−ln(1−√y2+x2x)=ln(x)+c
Step 1.2
Write 11 as a fraction with a common denominator.
-ln(xx-√y2+x2x)=ln(x)+c−ln(xx−√y2+x2x)=ln(x)+c
Step 1.3
Combine the numerators over the common denominator.
-ln(x-√y2+x2x)=ln(x)+c−ln(x−√y2+x2x)=ln(x)+c
-ln(x-√y2+x2x)=ln(x)+c−ln(x−√y2+x2x)=ln(x)+c
Step 2
Use n√ax=axnn√ax=axn to rewrite √y2+x2√y2+x2 as (y2+x2)12(y2+x2)12.
-ln(x-(y2+x2)12x)=ln(x)+c−ln⎛⎜⎝x−(y2+x2)12x⎞⎟⎠=ln(x)+c
Step 3
Move all the terms containing a logarithm to the left side of the equation.
-ln(x-(y2+x2)12x)-ln(x)=c−ln⎛⎜⎝x−(y2+x2)12x⎞⎟⎠−ln(x)=c
Step 4
Reorder y2y2 and x2x2.
-ln(x-(x2+y2)12x)-ln(x)=c−ln⎛⎜⎝x−(x2+y2)12x⎞⎟⎠−ln(x)=c
Step 5
Add ln(x)ln(x) to both sides of the equation.
-ln(x-(x2+y2)12x)=c+ln(x)−ln⎛⎜⎝x−(x2+y2)12x⎞⎟⎠=c+ln(x)
Step 6
Move all the terms containing a logarithm to the left side of the equation.
-ln(x-(x2+y2)12x)-ln(x)=c−ln⎛⎜⎝x−(x2+y2)12x⎞⎟⎠−ln(x)=c