Calculus Examples

Solve for y - natural log of 1- square root of (y^2)/(x^2)+1 = natural log of x+c
-ln(1-y2x2+1)=ln(x)+cln1y2x2+1=ln(x)+c
Step 1
Simplify both sides of the equation.
Tap for more steps...
Step 1.1
Simplify each term.
Tap for more steps...
Step 1.1.1
Write 11 as a fraction with a common denominator.
-ln(1-y2x2+x2x2)=ln(x)+cln1y2x2+x2x2=ln(x)+c
Step 1.1.2
Combine the numerators over the common denominator.
-ln(1-y2+x2x2)=ln(x)+cln1y2+x2x2=ln(x)+c
Step 1.1.3
Rewrite y2+x2x2y2+x2x2 as (1x)2(y2+x2)(1x)2(y2+x2).
Tap for more steps...
Step 1.1.3.1
Factor the perfect power 1212 out of y2+x2y2+x2.
-ln(1-12(y2+x2)x2)=ln(x)+cln112(y2+x2)x2=ln(x)+c
Step 1.1.3.2
Factor the perfect power x2x2 out of x2x2.
-ln(1-12(y2+x2)x21)=ln(x)+cln112(y2+x2)x21=ln(x)+c
Step 1.1.3.3
Rearrange the fraction 12(y2+x2)x2112(y2+x2)x21.
-ln(1-(1x)2(y2+x2))=ln(x)+cln1(1x)2(y2+x2)=ln(x)+c
-ln(1-(1x)2(y2+x2))=ln(x)+cln1(1x)2(y2+x2)=ln(x)+c
Step 1.1.4
Pull terms out from under the radical.
-ln(1-(1xy2+x2))=ln(x)+cln(1(1xy2+x2))=ln(x)+c
Step 1.1.5
Combine 1x1x and y2+x2y2+x2.
-ln(1-y2+x2x)=ln(x)+cln(1y2+x2x)=ln(x)+c
-ln(1-y2+x2x)=ln(x)+cln(1y2+x2x)=ln(x)+c
Step 1.2
Write 11 as a fraction with a common denominator.
-ln(xx-y2+x2x)=ln(x)+cln(xxy2+x2x)=ln(x)+c
Step 1.3
Combine the numerators over the common denominator.
-ln(x-y2+x2x)=ln(x)+cln(xy2+x2x)=ln(x)+c
-ln(x-y2+x2x)=ln(x)+cln(xy2+x2x)=ln(x)+c
Step 2
Use nax=axnnax=axn to rewrite y2+x2y2+x2 as (y2+x2)12(y2+x2)12.
-ln(x-(y2+x2)12x)=ln(x)+clnx(y2+x2)12x=ln(x)+c
Step 3
Move all the terms containing a logarithm to the left side of the equation.
-ln(x-(y2+x2)12x)-ln(x)=clnx(y2+x2)12xln(x)=c
Step 4
Reorder y2y2 and x2x2.
-ln(x-(x2+y2)12x)-ln(x)=clnx(x2+y2)12xln(x)=c
Step 5
Add ln(x)ln(x) to both sides of the equation.
-ln(x-(x2+y2)12x)=c+ln(x)lnx(x2+y2)12x=c+ln(x)
Step 6
Move all the terms containing a logarithm to the left side of the equation.
-ln(x-(x2+y2)12x)-ln(x)=clnx(x2+y2)12xln(x)=c
 [x2  12  π  xdx ]