Enter a problem...
Calculus Examples
Step 1
Subtract from both sides of the equation.
Step 2
Use the quadratic formula to find the solutions.
Step 3
Substitute the values , , and into the quadratic formula and solve for .
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Add parentheses.
Step 4.1.2
Let . Substitute for all occurrences of .
Step 4.1.2.1
Apply the product rule to .
Step 4.1.2.2
Raise to the power of .
Step 4.1.2.3
Multiply the exponents in .
Step 4.1.2.3.1
Apply the power rule and multiply exponents, .
Step 4.1.2.3.2
Multiply by .
Step 4.1.3
Factor out of .
Step 4.1.3.1
Factor out of .
Step 4.1.3.2
Factor out of .
Step 4.1.3.3
Factor out of .
Step 4.1.4
Replace all occurrences of with .
Step 4.1.5
Simplify.
Step 4.1.5.1
Simplify each term.
Step 4.1.5.1.1
Apply the distributive property.
Step 4.1.5.1.2
Multiply by by adding the exponents.
Step 4.1.5.1.2.1
Multiply by .
Step 4.1.5.1.2.1.1
Raise to the power of .
Step 4.1.5.1.2.1.2
Use the power rule to combine exponents.
Step 4.1.5.1.2.2
Add and .
Step 4.1.5.1.3
Move to the left of .
Step 4.1.5.1.4
Apply the distributive property.
Step 4.1.5.1.5
Multiply by .
Step 4.1.5.1.6
Apply the distributive property.
Step 4.1.5.1.7
Multiply by .
Step 4.1.5.1.8
Multiply by .
Step 4.1.5.2
Subtract from .
Step 4.1.6
Factor out of .
Step 4.1.6.1
Factor out of .
Step 4.1.6.2
Factor out of .
Step 4.1.6.3
Factor out of .
Step 4.1.7
Multiply by .
Step 4.1.8
Rewrite as .
Step 4.1.8.1
Factor out of .
Step 4.1.8.2
Rewrite as .
Step 4.1.8.3
Add parentheses.
Step 4.1.8.4
Add parentheses.
Step 4.1.9
Pull terms out from under the radical.
Step 4.2
Multiply by .
Step 4.3
Simplify .
Step 5
The final answer is the combination of both solutions.