Calculus Examples

Solve for y x^3-2x^2y+3xy^2=38
Step 1
Subtract from both sides of the equation.
Step 2
Use the quadratic formula to find the solutions.
Step 3
Substitute the values , , and into the quadratic formula and solve for .
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Add parentheses.
Step 4.1.2
Let . Substitute for all occurrences of .
Tap for more steps...
Step 4.1.2.1
Apply the product rule to .
Step 4.1.2.2
Raise to the power of .
Step 4.1.2.3
Multiply the exponents in .
Tap for more steps...
Step 4.1.2.3.1
Apply the power rule and multiply exponents, .
Step 4.1.2.3.2
Multiply by .
Step 4.1.3
Factor out of .
Tap for more steps...
Step 4.1.3.1
Factor out of .
Step 4.1.3.2
Factor out of .
Step 4.1.3.3
Factor out of .
Step 4.1.4
Replace all occurrences of with .
Step 4.1.5
Simplify.
Tap for more steps...
Step 4.1.5.1
Simplify each term.
Tap for more steps...
Step 4.1.5.1.1
Apply the distributive property.
Step 4.1.5.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 4.1.5.1.2.1
Multiply by .
Tap for more steps...
Step 4.1.5.1.2.1.1
Raise to the power of .
Step 4.1.5.1.2.1.2
Use the power rule to combine exponents.
Step 4.1.5.1.2.2
Add and .
Step 4.1.5.1.3
Move to the left of .
Step 4.1.5.1.4
Apply the distributive property.
Step 4.1.5.1.5
Multiply by .
Step 4.1.5.1.6
Apply the distributive property.
Step 4.1.5.1.7
Multiply by .
Step 4.1.5.1.8
Multiply by .
Step 4.1.5.2
Subtract from .
Step 4.1.6
Factor out of .
Tap for more steps...
Step 4.1.6.1
Factor out of .
Step 4.1.6.2
Factor out of .
Step 4.1.6.3
Factor out of .
Step 4.1.7
Multiply by .
Step 4.1.8
Rewrite as .
Tap for more steps...
Step 4.1.8.1
Factor out of .
Step 4.1.8.2
Rewrite as .
Step 4.1.8.3
Add parentheses.
Step 4.1.8.4
Add parentheses.
Step 4.1.9
Pull terms out from under the radical.
Step 4.2
Multiply by .
Step 4.3
Simplify .
Step 5
The final answer is the combination of both solutions.