Calculus Examples

Solve for x 2 natural log of 2x+ natural log of 16x=0
Step 1
Move all the terms containing a logarithm to the left side of the equation.
Step 2
Simplify the left side.
Tap for more steps...
Step 2.1
Simplify .
Tap for more steps...
Step 2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.1.1
Simplify by moving inside the logarithm.
Step 2.1.1.2
Apply the product rule to .
Step 2.1.1.3
Raise to the power of .
Step 2.1.2
Use the product property of logarithms, .
Step 2.1.3
Rewrite using the commutative property of multiplication.
Step 2.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.4.1
Move .
Step 2.1.4.2
Multiply by .
Tap for more steps...
Step 2.1.4.2.1
Raise to the power of .
Step 2.1.4.2.2
Use the power rule to combine exponents.
Step 2.1.4.3
Add and .
Step 2.1.5
Multiply by .
Step 3
To solve for , rewrite the equation using properties of logarithms.
Step 4
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 5
Solve for .
Tap for more steps...
Step 5.1
Rewrite the equation as .
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Simplify each term.
Tap for more steps...
Step 5.3.1
Anything raised to is .
Step 5.3.2
Multiply by .
Step 5.4
Factor the left side of the equation.
Tap for more steps...
Step 5.4.1
Rewrite as .
Step 5.4.2
Rewrite as .
Step 5.4.3
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 5.4.4
Simplify.
Tap for more steps...
Step 5.4.4.1
Apply the product rule to .
Step 5.4.4.2
Raise to the power of .
Step 5.4.4.3
Multiply by .
Step 5.4.4.4
One to any power is one.
Step 5.5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 5.6
Set equal to and solve for .
Tap for more steps...
Step 5.6.1
Set equal to .
Step 5.6.2
Solve for .
Tap for more steps...
Step 5.6.2.1
Add to both sides of the equation.
Step 5.6.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 5.6.2.2.1
Divide each term in by .
Step 5.6.2.2.2
Simplify the left side.
Tap for more steps...
Step 5.6.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.6.2.2.2.1.1
Cancel the common factor.
Step 5.6.2.2.2.1.2
Divide by .
Step 5.7
Set equal to and solve for .
Tap for more steps...
Step 5.7.1
Set equal to .
Step 5.7.2
Solve for .
Tap for more steps...
Step 5.7.2.1
Use the quadratic formula to find the solutions.
Step 5.7.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 5.7.2.3
Simplify.
Tap for more steps...
Step 5.7.2.3.1
Simplify the numerator.
Tap for more steps...
Step 5.7.2.3.1.1
Raise to the power of .
Step 5.7.2.3.1.2
Multiply .
Tap for more steps...
Step 5.7.2.3.1.2.1
Multiply by .
Step 5.7.2.3.1.2.2
Multiply by .
Step 5.7.2.3.1.3
Subtract from .
Step 5.7.2.3.1.4
Rewrite as .
Step 5.7.2.3.1.5
Rewrite as .
Step 5.7.2.3.1.6
Rewrite as .
Step 5.7.2.3.1.7
Rewrite as .
Tap for more steps...
Step 5.7.2.3.1.7.1
Factor out of .
Step 5.7.2.3.1.7.2
Rewrite as .
Step 5.7.2.3.1.8
Pull terms out from under the radical.
Step 5.7.2.3.1.9
Move to the left of .
Step 5.7.2.3.2
Multiply by .
Step 5.7.2.3.3
Simplify .
Step 5.7.2.4
The final answer is the combination of both solutions.
Step 5.8
The final solution is all the values that make true.