Enter a problem...
Calculus Examples
2ln(2x)+ln(16x)=02ln(2x)+ln(16x)=0
Step 1
Move all the terms containing a logarithm to the left side of the equation.
2ln(2x)+ln(16x)=02ln(2x)+ln(16x)=0
Step 2
Step 2.1
Simplify 2ln(2x)+ln(16x)2ln(2x)+ln(16x).
Step 2.1.1
Simplify each term.
Step 2.1.1.1
Simplify 2ln(2x)2ln(2x) by moving 22 inside the logarithm.
ln((2x)2)+ln(16x)=0ln((2x)2)+ln(16x)=0
Step 2.1.1.2
Apply the product rule to 2x2x.
ln(22x2)+ln(16x)=0ln(22x2)+ln(16x)=0
Step 2.1.1.3
Raise 22 to the power of 22.
ln(4x2)+ln(16x)=0ln(4x2)+ln(16x)=0
ln(4x2)+ln(16x)=0ln(4x2)+ln(16x)=0
Step 2.1.2
Use the product property of logarithms, logb(x)+logb(y)=logb(xy)logb(x)+logb(y)=logb(xy).
ln(4x2(16x))=0ln(4x2(16x))=0
Step 2.1.3
Rewrite using the commutative property of multiplication.
ln(4⋅16x2x)=0ln(4⋅16x2x)=0
Step 2.1.4
Multiply x2x2 by xx by adding the exponents.
Step 2.1.4.1
Move xx.
ln(4⋅16(x⋅x2))=0ln(4⋅16(x⋅x2))=0
Step 2.1.4.2
Multiply xx by x2x2.
Step 2.1.4.2.1
Raise xx to the power of 11.
ln(4⋅16(x1x2))=0ln(4⋅16(x1x2))=0
Step 2.1.4.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
ln(4⋅16x1+2)=0ln(4⋅16x1+2)=0
ln(4⋅16x1+2)=0ln(4⋅16x1+2)=0
Step 2.1.4.3
Add 11 and 22.
ln(4⋅16x3)=0ln(4⋅16x3)=0
ln(4⋅16x3)=0ln(4⋅16x3)=0
Step 2.1.5
Multiply 44 by 1616.
ln(64x3)=0ln(64x3)=0
ln(64x3)=0ln(64x3)=0
ln(64x3)=0ln(64x3)=0
Step 3
To solve for xx, rewrite the equation using properties of logarithms.
eln(64x3)=e0eln(64x3)=e0
Step 4
Rewrite ln(64x3)=0ln(64x3)=0 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
e0=64x3e0=64x3
Step 5
Step 5.1
Rewrite the equation as 64x3=e064x3=e0.
64x3=e064x3=e0
Step 5.2
Subtract e0e0 from both sides of the equation.
64x3-e0=064x3−e0=0
Step 5.3
Simplify each term.
Step 5.3.1
Anything raised to 00 is 11.
64x3-1⋅1=064x3−1⋅1=0
Step 5.3.2
Multiply -1−1 by 11.
64x3-1=064x3−1=0
64x3-1=064x3−1=0
Step 5.4
Factor the left side of the equation.
Step 5.4.1
Rewrite 64x3 as (4x)3.
(4x)3-1=0
Step 5.4.2
Rewrite 1 as 13.
(4x)3-13=0
Step 5.4.3
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=4x and b=1.
(4x-1)((4x)2+4x⋅1+12)=0
Step 5.4.4
Simplify.
Step 5.4.4.1
Apply the product rule to 4x.
(4x-1)(42x2+4x⋅1+12)=0
Step 5.4.4.2
Raise 4 to the power of 2.
(4x-1)(16x2+4x⋅1+12)=0
Step 5.4.4.3
Multiply 4 by 1.
(4x-1)(16x2+4x+12)=0
Step 5.4.4.4
One to any power is one.
(4x-1)(16x2+4x+1)=0
(4x-1)(16x2+4x+1)=0
(4x-1)(16x2+4x+1)=0
Step 5.5
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
4x-1=0
16x2+4x+1=0
Step 5.6
Set 4x-1 equal to 0 and solve for x.
Step 5.6.1
Set 4x-1 equal to 0.
4x-1=0
Step 5.6.2
Solve 4x-1=0 for x.
Step 5.6.2.1
Add 1 to both sides of the equation.
4x=1
Step 5.6.2.2
Divide each term in 4x=1 by 4 and simplify.
Step 5.6.2.2.1
Divide each term in 4x=1 by 4.
4x4=14
Step 5.6.2.2.2
Simplify the left side.
Step 5.6.2.2.2.1
Cancel the common factor of 4.
Step 5.6.2.2.2.1.1
Cancel the common factor.
4x4=14
Step 5.6.2.2.2.1.2
Divide x by 1.
x=14
x=14
x=14
x=14
x=14
x=14
Step 5.7
Set 16x2+4x+1 equal to 0 and solve for x.
Step 5.7.1
Set 16x2+4x+1 equal to 0.
16x2+4x+1=0
Step 5.7.2
Solve 16x2+4x+1=0 for x.
Step 5.7.2.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 5.7.2.2
Substitute the values a=16, b=4, and c=1 into the quadratic formula and solve for x.
-4±√42-4⋅(16⋅1)2⋅16
Step 5.7.2.3
Simplify.
Step 5.7.2.3.1
Simplify the numerator.
Step 5.7.2.3.1.1
Raise 4 to the power of 2.
x=-4±√16-4⋅16⋅12⋅16
Step 5.7.2.3.1.2
Multiply -4⋅16⋅1.
Step 5.7.2.3.1.2.1
Multiply -4 by 16.
x=-4±√16-64⋅12⋅16
Step 5.7.2.3.1.2.2
Multiply -64 by 1.
x=-4±√16-642⋅16
x=-4±√16-642⋅16
Step 5.7.2.3.1.3
Subtract 64 from 16.
x=-4±√-482⋅16
Step 5.7.2.3.1.4
Rewrite -48 as -1(48).
x=-4±√-1⋅482⋅16
Step 5.7.2.3.1.5
Rewrite √-1(48) as √-1⋅√48.
x=-4±√-1⋅√482⋅16
Step 5.7.2.3.1.6
Rewrite √-1 as i.
x=-4±i⋅√482⋅16
Step 5.7.2.3.1.7
Rewrite 48 as 42⋅3.
Step 5.7.2.3.1.7.1
Factor 16 out of 48.
x=-4±i⋅√16(3)2⋅16
Step 5.7.2.3.1.7.2
Rewrite 16 as 42.
x=-4±i⋅√42⋅32⋅16
x=-4±i⋅√42⋅32⋅16
Step 5.7.2.3.1.8
Pull terms out from under the radical.
x=-4±i⋅(4√3)2⋅16
Step 5.7.2.3.1.9
Move 4 to the left of i.
x=-4±4i√32⋅16
x=-4±4i√32⋅16
Step 5.7.2.3.2
Multiply 2 by 16.
x=-4±4i√332
Step 5.7.2.3.3
Simplify -4±4i√332.
x=-1±i√38
x=-1±i√38
Step 5.7.2.4
The final answer is the combination of both solutions.
x=-1-i√38,-1+i√38
x=-1-i√38,-1+i√38
x=-1-i√38,-1+i√38
Step 5.8
The final solution is all the values that make (4x-1)(16x2+4x+1)=0 true.
x=14,-1-i√38,-1+i√38
x=14,-1-i√38,-1+i√38