Calculus Examples

Solve for x natural log of (90000(1+0.0158)^x)-(2334.6((1+0.0158)^x-1))/0.0158 = natural log of (90000-90000*0.85)*(1-0.008165)^(x-12)
ln((90000(1+0.0158)x)-2334.6((1+0.0158)x-1)0.0158)=ln((90000-900000.85)(1-0.008165)x-12)
Step 1
Simplify ln((90000(1+0.0158)x)-2334.6((1+0.0158)x-1)0.0158).
Tap for more steps...
Step 1.1
Simplify each term.
Tap for more steps...
Step 1.1.1
Add 1 and 0.0158.
ln(900001.0158x-2334.6((1+0.0158)x-1)0.0158)=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.1.2
Add 1 and 0.0158.
ln(900001.0158x-2334.6(1.0158x-1)0.0158)=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.1.3
Factor 0.0158 out of 0.0158.
ln(900001.0158x-2334.6(1.0158x-1)0.0158(1))=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.1.4
Separate fractions.
ln(900001.0158x-(2334.60.01581.0158x-11))=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.1.5
Divide 2334.6 by 0.0158.
ln(900001.0158x-(147759.493670881.0158x-11))=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.1.6
Divide 1.0158x-1 by 1.
ln(900001.0158x-(147759.49367088(1.0158x-1)))=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.1.7
Apply the distributive property.
ln(900001.0158x-(147759.493670881.0158x+147759.49367088-1))=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.1.8
Multiply 147759.49367088 by -1.
ln(900001.0158x-(147759.493670881.0158x-147759.49367088))=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.1.9
Apply the distributive property.
ln(900001.0158x-(147759.493670881.0158x)--147759.49367088)=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.1.10
Multiply 147759.49367088 by -1.
ln(900001.0158x-147759.493670881.0158x--147759.49367088)=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.1.11
Multiply -1 by -147759.49367088.
ln(900001.0158x-147759.493670881.0158x+147759.49367088)=ln((90000-900000.85)(1-0.008165)x-12)
ln(900001.0158x-147759.493670881.0158x+147759.49367088)=ln((90000-900000.85)(1-0.008165)x-12)
Step 1.2
Subtract 147759.493670881.0158x from 900001.0158x.
ln(-57759.493670881.0158x+147759.49367088)=ln((90000-900000.85)(1-0.008165)x-12)
ln(-57759.493670881.0158x+147759.49367088)=ln((90000-900000.85)(1-0.008165)x-12)
Step 2
Simplify ln((90000-900000.85)(1-0.008165)x-12).
Tap for more steps...
Step 2.1
Multiply -90000 by 0.85.
ln(-57759.493670881.0158x+147759.49367088)=ln((90000-76500)(1-0.008165)x-12)
Step 2.2
Subtract 76500 from 90000.
ln(-57759.493670881.0158x+147759.49367088)=ln(13500(1-0.008165)x-12)
Step 2.3
Subtract 0.008165 from 1.
ln(-57759.493670881.0158x+147759.49367088)=ln(135000.991835x-12)
ln(-57759.493670881.0158x+147759.49367088)=ln(135000.991835x-12)
Step 3
Graph each side of the equation. The solution is the x-value of the point of intersection.
No solution
 [x2  12  π  xdx ]